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Realization of a Quantum Walk with One and Two Trapped Ions
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We experimentally demonstrate a quantum walk on a line in phase space using one and two trapped
ions. A walk with up to 23 steps is realized by subjecting an ion to state-dependent displacement
operations interleaved with quantum coin tossing operations. To analyze the ion’s motional state after each
step we apply a technique that directly maps the probability density distribution onto the ion’s internal
state. The measured probability distributions and the position’s second moment clearly show the
nonclassical character of the quantum walk. To further highlight the difference between the classical
(random) and the quantum walk, we demonstrate the reversibility of the latter. Finally, we extend the
quantum walk by using two ions, giving the walker the additional possibility to stay instead of taking a

step.
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The Galton board [1] is a mechanical device in which a
falling ball encounters a triangular lattice of pins stuck in a
board that repeatedly scatter the ball to the left or right in a
random way. Originally conceived for illustrating the
emergence of normal probability distributions, it can also
be considered as an apparatus for carrying out a random
walk on a line [2,3], a notion that had not been introduced
into the scientific literature at that time.

Since then, random walks have become a ubiquitous
concept in physics and computer science. The quantum
walk [4,5] is the quantum analog of a random walk. In its
discrete one-dimensional version, a spin—% quantum parti-
cle initially described by a wave packet centered at position
Xo undergoes a one-dimensional motion governed by the
particle’s internal state. The particle is state-dependently
displaced by a step of length d by the action of the unitary
operator U, = exp(— + o; pd), where o; is a spin projec-
tion operator and p is the momentum operator (see Fig. 1).
This operation is followed by another unitary operation
U; = exp(—i 7§ o) with Tr(o ;o) = 0 scrambling the par-
ticle’s internal state. After N iterations of this elementary
step, the particle’s initial wave function |W,) has evolved
into

[Wy) = (U;U )N W) = (e /o= i/Mapd)N |y,
(D

After N steps, for a wave packet initially localized at x, =
0, the wave packet is spread out over a distance 2Nd.
Moreover, due to quantum interference of different paths,
the spatial probability distribution strongly differs from the
classical case. While for the classical random walk a
binomial probability distribution results with (x?) = N,
the distribution for the quantum walk is peaked towards
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the outer edge and has a second moment growing like
(#2) o« N2

There have been a number of proposals discussing ex-
perimental realizations of one-dimensional quantum walks
in systems like atoms in optical lattices [6], trapped ions
[71, or cavity QED [8]. Recently, experimental realizations
with atoms in an optical lattice [9], a trapped ion [10], and
photons [11] have been reported.

For the case of trapped ions, different techniques for
analyzing the quantum walk have been discussed [7,12]
and a proof-of-principle experimental realization was re-
ported recently [10] for a limited number of steps. In this
Letter, we demonstrate a discrete quantum walk with up to
23 steps using a single trapped ion and analyze it by a
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FIG. 1. Quantum walk in phase space. In each step of the walk,
a state-dependent displacement operation splits the wave func-
tion in phase space into two parts followed by a coin tossing
operation that coherently scrambles the internal state of the ion.
These operations are repeated N times. To measure marginal
distributions in phase space, a probe pulse is applied that state-
dependently displaces the wave function in phase space in a
direction orthogonal to the one to be measured.
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measurement technique that directly reconstructs the ion’s
probability density along a line in phase space.

In the experiment, a single *°Ca™ ion is suspended in a
linear Paul trap [13] with radial and axial trap frequencies
of w, =27 X3 MHz and w,, = 27 X 1.356 MHz, re-
spectively. Doppler cooling, resolved sideband cooling of
the axial mode, and optical pumping prepare the ion in the
ground state of motion and the internal state |S, s m =
1/2) = |—). [14]. A narrow linewidth laser at 729 nm
coherently couples the states |—), and |Ds,,, m = 3/2) =
|+).. State detection is done via fluorescence detection on
the S/, < P/, transition [13].

A general state-dependent displacement Hamiltonian is
implemented using a bichromatic light field at 729 nm that
is resonant with both the blue and red axial sideband of the
| =), < |+). transition. In the Lamb-Dicke regime, the
resulting Hamiltonian, which is the sum of a Jaynes-
Cummings and an anti-Jaynes-Cummings Hamiltonian,
is given by

Hp = mmQ[(o cos¢p, — oy sing )
®[(a+ at)cosp_ + i(at — a)sing_J]. (2)

Here, n = 0.06 is the Lamb-Dicke parameter, () is the
Rabi frequency, and 2¢p,. = ¢, + ¢, and 2¢p_ = ¢, —
¢, are the sum and the difference of the phases of the light
fields tuned to the red and blue sideband.

To perform a symmetric quantum walk the ion is pre-
pared in the state [+), = (|+), + il=),)/\/2 by a /2
pulse on the carrier transition. Applying the bichromatic
light field with ¢ = 7/2 and ¢, = 0 realizes the
Hamiltonian H; = 2nQ A, o, p with the momentum op-

erator p = “TT*" i—’t and A, = \/h/2mw,,. Application of
this Hamiltonian for a duration 7 generates the propagator
U, with step size d = 2nQ7A,.

Under the action of H,, the ion’s wave packet coherently
splits in phase space along the x axis. The two emerging
wave packets '™, " are associated with the internal
states |*),. The length and the intensity of the pulse
determine the width of the splitting. In our experiments
we use a pulse of 40 us with a Rabi frequency of ) =
27 X 68 kHz to achieve a step size of d = 2A,. This step
size makes the two resulting motional wave packets nearly
orthogonal, |<z,b(1m)|¢(2m))|2 ~ 0.02, but still allows for a
large number of steps in phase space. Next, we perform a
7r/2 pulse acting on the carrier transition as a symmetric
coin flip. This pulse creates an equal superposition of o,
eigenstates for both wave packets. These two pulses are
repeated according to the number of steps to be carried out.

To measure the probability distribution along a line in
phase space, we create two displaced copies of the state
that are subsequently interfered. For this, we use another
state-dependent displacement operation v, =
exp(—ikXo,/2) [15,16]. A measurement of o, following
the application of U, is equivalent to measuring the ob-

servable
O(k) = Ua. U, = cos(kd)o. + sin(kf)a,,  (3)

with the usual position operator £ = (at + a)A, on the
initial state. The propagator U, is obtained by setting ¢
and ¢ _ in Hp to 0. Here, k = 279} ,t/A, is proportional to
the interaction time ¢. If the ion’s internal state is |+),, we
have (O(k)) = (cos(k#)), and for |+),, we have (O(k)) =
(sin(k%)). A Fourier transformation of these measurements
yields the probability density (5(X — x)) in position space,
which for a pure state |¥) amounts to |W(x)|?>. Further-
more, we have that j—kzz (O(k))|,—¢ = (**0,) [17]. For eigen-
states of o, the initial curvature of the expectation value
(O(k)y thus gives the width of the probability distribu-
tion w,.

The quantum walk entangles internal and motional de-
grees of freedom. Its analysis, however, requires the prepa-
ration of pure internal states like |+), or |+),. Therefore,
we recombine all internal state populations in |—), before
the measurement. To this end, the population in [+), is
transferred to | —), after transferring the population in |—),
to the auxiliary state |Ds, m = 5/2). A laser pulse at
854 nm excites the population from |Ds/, m = 5/2) to
|P3/5, m = 3/2) from where it spontaneously decays to
|—).. The efficiency of this pumping process is >99%,
limited by a small branching ratio to the D3/, state. Only
after the recombination step, we prepare the internal state
required for measuring the even or odd Fourier compo-
nents of (3). Because of the small Lamb-Dicke parameter,
the probability of changing the motional state of the ion
during the pumping steps is small and hardly affects mea-
surements of observables in position space at all.

In the experiment we set (), = 277 X 26 kHz and mea-
sure (o) for probe times between 0 and 300 s in order to
reconstruct the probability distribution (§(& — x)) for dif-
ferent numbers of steps N. Since the walk is symmetric, it
is in principle sufficient to measure only the even compo-
nents of (3). For a seven-step walk, the measured odd and
even Fourier components are displayed in Fig. 2(a).
Figure 2(b) shows the reconstructed probability distribu-
tion (§(% — x)) based on the even components for up to 13
steps. The uneven terms were checked to be close to zero
for each number of steps N. The dashed lines in the plots
are numerical simulations based on the Lamb-Dicke ap-
proximation. These lines deviate from the reconstructed
distribution for N > 7 due to higher-order terms in 7 that
are not taken into account in Eq. (2). The solid lines are
based on a numerical simulation using all orders. A similar
difficulty occurs in the measurement of observables based
on Eq. (3). For this reason, the reconstruction is not ac-
complished by a direct Fourier transformation of the data.
Instead, we apply a constrained least-square fit based on
convex optimization [18] capable of handling higher-order
corrections (see supplementary material [19] for more
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FIG. 2 (color online). (a) Measurement of Fourier components
(cos(kx)) and (sin(kx)) for a seven-step quantum walk. The data
are obtained by varying the duration of the probe pulse for the
ion prepared in the internal state |+), (left) or |+)y (right) after
completing the walk. The probability distribution is obtained by
Fourier transforming a fit to the data (solid line). (b) Recon-
struction of the symmetric part of the probability distribution
(6(% — x)) for up to 13 steps in the quantum walk. The blue
dashed curve is a numerical calculation for the expected distri-
bution within the Lamb-Dicke regime. The blue solid curve
takes into account corrections to the Lamb-Dicke regime. In
step 7, the dotted curve represents the full reconstruction using
also the (sin(kx)) shown in (a). (c) Probability distribution of a
five-step quantum walk after application of five additional steps
which invert the walk and bring it back to the ground state.

information on the reconstruction process). To get
smoother distributions additional constraints were invoked
by the reconstruction algorithm. A physical constraint is
given by the maximal kinetic energy a one-dimensional
wave packet can have. An estimate for the kinetic energy
can be determined by measuring the momentum distribu-
tion in the same way as the position distribution. By
changing ¢ _ to /2 in the probe pulse, the operator £
appearing in (3) is replaced by an operator « p. These
measurements [see Fig. 3(a)] indicate that the momentum
distribution is not seriously affected during the walk, as
expected for a pure displacement along the x axis.

Steps N

Steps N

FIG. 3 (color online). (a) Width w, of the probability distri-
bution in units of ground state size A, as a function of the
number of steps for a quantum (M) walk. The upper solid curve
represents a full numerical simulation of the quantum walk as
realized in the experiment. The width of the x distribution for a
classical random walk (@) increases more slowly and is de-
scribed (middle solid line) by Eq. (4). The data points () show
the measured width w, of the marginal distribution along the p
direction with A, = 71/2A,. (b) Average number of vibrational
quanta after N steps in the quantum walk measured by driving
oscillations on the carrier transition. The solid line is based on a
full simulation, the dashed line assumes the validity of the Lamb-
Dicke approximation.

A striking difference between classical and quantum
walks is the reversibility of the latter. In the experiment
we reversed a quantum walk after five steps. This was done
by switching the phase of the following five displacement
and coin flipping pulses by 7. In this way the quantum
walk is exactly reversed and the ion returns to the ground
state. The corresponding reconstructed probability distri-
bution shown in Fig. 2(c) closely resembles the one of the
initial state and demonstrates once more the coherence of
the quantum walk.

To further highlight the differences between quantum
and classical walks we also realized a classical walk by
randomizing the phase between each step (while keeping
the coin flip-displacement operator pair coherent for each
individual step). The phase for each step was generated by
arandom noise generator. This mimics a completely mixed
ensemble of measurement outcomes that behaves classi-
cally. A good way of quantifying the difference between
the quantum and classical walks is by measuring the aver-
age width of the probability distributions. For a classical
walk with a step size d = sA, we have

2s*N
T

w,=A, + 1, 4
where the second term takes into account the initial width
A, of the probability distribution. By contrast, for a quan-
tum walk the width goes as w, ~ N for high N. To measure
w, for the random walk, the curvature of (o) at short
probe time was analyzed. Quadratic fitting gives direct
access to the width w,. For the quantum walk, w, was
obtained from the measured probability distributions. In
Fig. 3(a) the results of these procedures can be seen for
both a quantum and a classical walk.

To avoid problems in the measurement of the motional
state due to leaving the Lamb-Dicke limit for large num-
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FIG. 4 (color online). Reconstructed probability distribution
(6(% — x)) for a two-ion quantum walk with up to five steps
with a step size of 4A ..

bers of steps, we implemented a method suggested in [12].
Outside the Lamb-Dicke regime the coupling strength ), ,
on the carrier depends on the phonon number n as ), , =
QO,L,(n?%). Here, L,(n?) is the nth order Laguerre poly-
nomial. The mean phonon number (n) is determined by a
constrained least-square fit of the carrier Rabi flops with
the number state distribution as a fit parameter. In Fig. 3(b),
the resulting average vibrational quantum numbers are
shown. As expected for the quantum walk, we observe a
quadratic dependence (n) = N? on the number of steps.
Finally, we extend the quantum walk concept by adding
a second ion to the system [20]. In the two-ion quantum
walk we make use of the center-of-mass mode. To account

for the second ion, all Pauli matrices o; in Eq. (1) are

replaced by 051) + 0'52). This changes the coin from two

sided to four sided, with three possible operations. The
“side” belonging to the state [+ +), (|— —),) corresponds
to a step to the right (left) while the sides belonging to the
states |+ —), and | — +), correspond to no step at all. The
ions are prepared in the state |+ +), with a 7/2 pulse
leading to a symmetric walk. For the two-ion quantum
walk all pulses are applied to both ions simultaneously.
The probability distribution of the center-of-mass mode is
obtained in the same way as for a single ion. The results for
a walk of up to five steps are shown in Fig. 4. Again, the
distribution deviates strongly from the classical version
and shows a faster spreading.

In summary, we have implemented a quantum walk
using trapped ions. An experimental technique was imple-
mented to determine the probability distribution along a
line in phase space. This method might have further appli-
cations in quantum optics experiments or quantum simu-
lations [16]. We have highlighted the difference between a

classical and a quantum walk and demonstrated the rever-
sibility of the latter. The current limitation in number of
steps is given by instabilities in the trap frequency leading
to decoherence and by the change in the coupling strength
due to high phonon numbers. Quantum walks are of im-
portance as a primitive for quantum computation [21] and
in finding search quantum algorithms that outperform their
classical counterparts [22]. As such the experimental im-
plementation of the quantum walk serves as an important
benchmark and points the way to further experiments. For
instance, the implementation of a quantum walk with two
ions opens up the interesting possibility to introduce en-
tanglement [20] and more advanced walks.
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