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We argue that the vacuum polarization by the virtual electron-positron pairs can be measured by

studying a Josephson junction in a strong magnetic field. The vacuum polarization results in a weak

dependence of the Josephson constant on the magnetic field strength which is within the reach of the

existing experimental techniques.
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The interaction of the electromagnetic field with the
quantum fluctuations of a vacuum is responsible for
many remarkable nonlinear phenomena described by the
theory of quantum electrodynamics (QED) [1,2]. In par-
ticular, the polarization of vacuum by virtual electron-
positron pairs results in the dependence of a charged
particle interaction with the electromagnetic potential on
the field strength and on the characteristic momentum
transfer. This intrinsically relativistic effect is strongly
suppressed and becomes observable only in very strong
fields or in high energy processes. For example, in
electron-positron scattering at energy close to the mass of
the Z boson, which is 5 orders of magnitude heavier than an
electron, the electromagnetic interaction is described by
the ‘‘running’’ coupling constant �ðMZÞ � 1=128 rather
than by the usual fine structure constant � � 1=137. In
condensed matter the effect of vacuum polarization is so
tiny that in most cases it is absolutely indistinguishable
against the background of the complex quantum mechani-
cal interactions. The only chance to observe it is to find a
relation which is exact in quantum mechanics but can be
modified in full QED. A renowned example of an exact
result in quantum mechanics is the Josephson frequency-
voltage relation. In the seminal papers [3] Josephson
studied a system of two superconductors separated by a
thin insulating barrier, the Josephson junction. He found, in
particular, that a constant voltage V across the junction
results in an alternating current through the junction at the
frequency � proportional to the voltage, � ¼ KJV, where
KJ is the Josephson constant. A simple quantum mechani-
cal calculation relates it to the electron charge and the
Planck constant

KJ ¼ 2e=h: (1)

This prediction has been verified experimentally [4] and is
known as ac Josephson effect. A remarkable property of
the ac Josephson effect is that Eq. (1) is stable against all
kinds of perturbations in quantum mechanics because of
the gauge invariance [5]. Another famous example of the
exact relations in quantummechanics is the quantization of
the Hall conductivity of the two-dimensional electron sys-

tem in a strong transverse magnetic field in the units of
1=RK, where

RK ¼ h=e2 (2)

is the von Klitzing constant [6]. As in the case of the ac
Josephson effect, this result is protected against corrections
by the gauge invariance [7]. The absence of quantum
mechanical corrections makes Eqs. (1) and (2) crucial for
metrology. For example, the most accurate value of the
Planck constant is currently obtained through the relation
1=h ¼ K2

JRK=4 [8]. Given the important role that KJ and
RK play for determination of the fundamental constants,
much effort is being made to verify Eqs. (1) and (2)
experimentally [9].
On the theory side, for a long time these relations were

thought to be exact. Recently, however, a deviation from
the quantum mechanical result (2) has been discovered
[10]. The physics behind this phenomenon is in a modifi-
cation of the local coupling of charged particles to the
electromagnetic potential due to vacuum polarization by
highly virtual electron-positron pairs in a strong magnetic
field. For a typical magnetic field strength of about 10 T it
amounts to a tiny 10�20 correction. This is well beyond the
precision of the current quantum Hall experiments [11],
which is about one part in 1012 and is limited by the
thermal Johnson-Nyquist noise. For Josephson junctions
there is no such limit and universality of the frequency-
voltage relation has been established to the amazing accu-
racy of 10�19 already two decades ago [12]. Thus one may
expect that a similar effect, if it exists, can be experimen-
tally observed in a Josephson junction subject to a strong
magnetic field. The purpose of this letter is to show that this
is indeed the case.
Our analysis of the ac Josephson effect is based on the

following fundamental properties: (i) existence in a super-
conductor of the macroscopic phase-coherent state of
weakly bound electron pairs (Cooper pairs) described by
the wave function � ¼ j�jei�, (ii) 2�-periodic depen-
dence of the current through the junction on the difference
of the phase � across the junction, and (iii) gauge invari-
ance of the electromagnetic interactions. We also rely on
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the fact that a sufficiently strong magnetic field is not
screened by the Josephson current and penetrates the junc-
tion [13]. To get the correction to Eq. (1) in a closed
analytical form we consider a simplified model of the
Josephson junction described below. This, however, does
not affect the general character of the result.

Interaction of Cooper pairs with the external electro-
magnetic potential A� ¼ ðA0;AÞ is dictated by gauge in-
variance and in quantum mechanics is described by the
Hamiltonian of the following general form [14]

H ¼ 2eA0 þHðB;E;DÞ; (3)

where the second term is a function of the spatial covariant
derivative D ¼ @� i2eA, the electric field E and the
magnetic field B corresponding to the potential A�. Our
analysis does not depend on the specific form of the
function H. The gauge invariance ensures that Eq. (3) is
linear in A0 and explicitly depends on A only through the
covariant derivative. The form of the interaction (3) guar-
antees that the Josephson frequency-voltage relation is
exact [5]. This can be proven as follows. The physical
observables depend on the gauge invariant combination

�ðrÞ ¼ �ðrÞ � 2e
Z r

Aðr0Þ � dr0 (4)

rather than on the bare phase �ðrÞ. At the same time the
static scalar potential A0ðrÞ can be the removed by the
gauge transformation

A�0ðrÞ ¼ A�ðrÞ � @��ðrÞ; �ðrÞ ¼ tA0ðrÞ; (5)

so that

A0
0ðrÞ ¼ 0; A0ðrÞ ¼ AðrÞ þ trA0ðrÞ: (6)

Thus the phase difference between two arbitrary points r1
and r2 can be written as

�� ¼ ��0 � 2et
Z r1

r2

rA0ðr0Þ � dr0

¼ ��0 � 2et½A0ðr1Þ � A0ðr2Þ�; (7)

where ��0 is the time-independent phase difference in the
absence of the electric field. The Josephson current is
2�-periodic function of � and, therefore, Eq. (7) implies
that the potential difference V ¼ A0ðr1Þ � A0ðr2Þ between
two superconductors results in the Josephson current os-
cillations with the angular frequency

! ¼ 2eV; (8)

which gives Eq. (1) in the physical units. Thus gauge
invariance leaves no room for corrections to this equation
in quantum mechanics.

In full QED the situation becomes more involved since
the coupling of charged states to the electromagnetic po-
tential is modified by the radiative corrections though it
remains gauge invariant. We are interested in the correc-

tions due to vacuum polarization through creation and
annihilation of virtual electron-positron pairs in external
magnetic field graphically shown in Fig. 1. Quantitatively
the effect is determined by the behavior of the vacuum
polarization tensor���ðqÞ at small four-momentum trans-

fer q. It can be expanded in powers of the external field, see
Fig. 1. For a homogeneous or slowly varying field this
gives a series in the parameter

�2 ¼
�
eB

m2

�
2 � 1; (9)

where B ¼ jBj and m is the electron mass. The leading
Oð1Þ term of the expansion is ultraviolet divergent and is
absorbed by the on-shell renormalization of the physical
electron charge e. TheOð�2Þ correction to the polarization
tensor in the limit q ! 0 reads [10]

	���ðqÞ¼��

�
�2 1

45
½2ðg��q

2�q�q�Þ
�7ðg��q

2�q�q�Þkþ4ðg��q
2�q�q�Þ?�:

(10)

The correction to the polarization tensor is transverse
because of gauge invariance. At the same time the
Lorentz and rotational invariance is broken and Eq. (10)
includes the transverse projectors in the ‘‘parallel’’ (q0, qk)
and ‘‘orthogonal’’ (q?) two-dimensional subspaces of the
whole four-dimensional Minkowskian momentum space
(q0, q). Here qk and q? components correspond to the

spatial momentum parallel and orthogonal to the magnetic
field, respectively. The correction (10) cannot be ‘‘renor-
malized out’’ and results in corrections to the local cou-
pling of charged states to the electromagnetic potential and
the correction to the photon propagator, which is nontrivial
since the external magnetic field changes the photon dis-
persion law [15]. The first term of Eq. (10) is Lorentz
covariant and has the same structure as the Oð1Þ vacuum
polarization. The last two terms of Eq. (10) violate Lorentz
and rotational invariance leaving unbroken axial symmetry
in respect to the magnetic field direction. These noncovar-

FIG. 1. Feynman diagrams representing the vacuum polariza-
tion by virtual electron-positron pairs in the external magnetic
field. The arrow and wavy lines correspond to the free electron
and photon propagators, respectively. The bold arrow lines
correspond to the electron propagating in the external magnetic
field. The crossed wavy lines represent the external magnetic
field.
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iant terms result in the double pole contribution in the
photon propagator and contribute to the photon dispersion.

We are interested only in the corrections to the local
coupling with the scalar potential A0, which depends on the
magnetic field configuration, i.e., on the particular struc-
ture of the Josephson junction. To get this correction in a
closed form we consider a simplified model of the
Josephson junction shown in Fig. 2. It corresponds to the
homogeneous orthogonal electric and magnetic fields in-
side the infinite and plane insulator layer. For such a field
configuration the analysis is simplified because the non-
covariant terms vanish and the correction to the dispersion
law does not emerge. Thus the correction to the
Hamiltonian takes the standard QED form

	v:p:H ¼ �e
Z 	�0�ðqÞ

q2
~A�ðqÞeiqr d4q

ð2�Þ4 þ . . . ; (11)

where ~A�ðqÞ is the Fourier transform of the electromag-
netic potential and we keep only the contribution with the
structure of the first term in Eq. (3). The integral in Eq. (11)
gets nonvanishing contribution only from the first term of
Eq. (10) and can be evaluated with the result

	v:p:H ¼ 2	eA0ðrÞ; (12)

where A0ðrÞ ¼ E � r and

	e ¼ 1

45

�

�
�2e: (13)

Equation (12) has exactly the same form as the first term of
Eq. (3) but it is gauge invariant because 	��� in Eq. (11) is

transverse. It is easy to check by explicit calculation that
Eq. (12) does not change under the gauge transformation
(6). This can be understood as a manifestation of the Ward
indentity [16], which means that the interaction of the
charged states to the pure gauge field configurations is
not renormalized. However, this remaining ‘‘potential’’
term can be removed from the Hamiltonian by an addi-
tional gauge transformation with the parameter

	�ðrÞ ¼ 	e

e
�ðrÞ: (14)

Then, by using the same arguments as before, we derive the
new result for the Josephson current frequency

! ¼ 2e�V; (15)

which differs from Eq. (8) by the ‘‘effective charge’’ e� ¼
eþ 	e. This is not a surprising result because 2e�V is
nothing but the difference �� of the electrochemical
potential between two identical superconductors and the
general form of the Josephson relation

! ¼ �� (16)

is not changed.
The vacuum polarization effect can be accounted for by

introducing an effective field-dependent Josephson con-
stant

KJðBÞ ¼ KJ

�
1þ 1

45

�

�
�2

�
; (17)

or in physical units

KJðBÞ ¼ KJ

�
1þ 1

45

�

�

�
@eB

c2m2

�
2
�
: (18)

This result is not exact since it was obtained for a simpli-
fied model of the junction. In reality the magnetic field in
the junction is partially screened by the Josephson current
and oscillates about some average value [13], which should
be used in Eq. (18). At the same time the result is not
affected by the sharp variation of the magnetic field near
the superconductor surface because A0 is continuous and
the thin boundary region does not contribute to the poten-
tial difference. In general, the frequency-voltage relation is
not sensitive to the interaction inside the superconductors
where A0 is constant.
A more subtle problem is that in real experiments the

magnetic field does not vanish only in a finite volume. One
may argue that the electric charge of a Cooper pair mea-
sured by means of the Gauss law at spatial infinity in this
case does not differ from 2e, that is in apparent contra-
diction with Eq. (15). Similar argument has been used in
Refs. [17,18] to prove the absence of the corrections to KJ

through the electron coupling modification due to the
interaction of the electrons inside the superconductor. In
our case, however, this argument does not work since the
coupling is modified outside the superconductor, where the
scalar potential varies. Indeed, the chemical potential dif-
ference between two superconductors is given by �� ¼
2e�V if the magnetic field is homogeneous in the region of
the nonvanishing electric field giving rise to V, i.e., in the
vicinity of the junction, regardless to its behavior at the
infinity. Here the following analogy may be useful: the
vacuum polarization in the interatomic electric and mag-
netic fields does not change the total charge of the atom but
does change the electron binding energy.

FIG. 2. Model geometry of the Josephson junction. Gray areas
correspond to the superconductors separated by the insulator
layer. The electric and magnetic fields are homogeneous in the
insulator and vanish in the superconductors.
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Let us now examine prospects to detect the magnetic
field dependence of KJ experimentally. A relevant tech-
nique has been elaborated long time ago and consists in
comparison of the voltage difference between two junc-
tions which are phase locked to a source of microwave
radiation [19]. The junctions are connected by the super-
conducting links to form a loop. A nonvanishing voltage
difference results in a loop current increasing linearly in
time, which can be monitored by a sensitive SQUID de-
tector. The time-independent magnetic field does not
change the frequency of the plane waves, though it changes
their dispersion [15]. Thus if one of the junctions is em-
bedded into magnetic field, the correction to the frequency-
voltage relation results in a net electromotive force around
the loop. Note that the junctions themselves do not con-
tribute to the net electromotive force because of Eq. (16).
To estimate the size of the effect we rewrite the correction
term of Eq. (18) as follows

1

45

�

�

�
B

B0

�
2
; (19)

where B0 ¼ c2m2=ð@eÞ � 4:41� 109 T. The critical mag-
netic field which destroys the quantum coherence in the
Josephson junction is close to the one of the superconduc-
tors and could be as large as a few units times 10 T. This
gives approximately 10�20 variation of the Josephson con-
stant. On the other hand a pair of junctions had been
compared with relative accuracy of 10�19 to test the
equivalence principle for charged particles [12] and the
accuracy can probably further increased. Thus the effect is
likely to be within the reach of the existing experimental
techniques.

In summary, the vacuum polarization alters the
Josephson frequency-voltage relation in the presence of a
strong magnetic field and results in a weak dependence of
the Josephson constant on the magnetic field strength. This
remarkable manifestation of a fine nonlinear quantum field
effect in a collective phenomenon in condensed matter

could be observed in a dedicated experiment, that would
literally be a measurement of the vacuum polarization with
a voltmeter.
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