
Correlations between Vibrational Entropy and Dynamics in Liquids

Matthieu Wyart

Lewis-Sigler Institute, Princeton University, Princeton, New Jersey 08544, USA
and Center for Soft Matter Research, New York University, New York 10003, USA

(Received 7 November 2009; published 1 March 2010)

An approximate relation between the vibrational entropy and the mean square displacement of the

particles is derived. Using observations of the short-time dynamics in liquids of various fragility, it is

argued that (i) if the crystal entropy is significantly smaller than the liquid entropy at Tg, the extrapolation

of the vibrational entropy leads to the correlation TK � T0, where TK is the Kauzmann temperature and T0

is the temperature extracted from the Vogel-Fulcher fit of the viscosity, and (ii) the jump in specific heat

associated with vibrational entropy is very small for strong liquids, and increases with fragility. The

analysis suggests that these correlations stem from the stiffening of the Boson peak under cooling,

underlying the importance of this phenomenon on the dynamical arrest.
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When a liquid is cooled sufficiently rapidly to avoid
crystallization, the relaxation time � below which it be-
haves as a solid increases up to the glass transition tem-
perature Tg where the liquid falls out of equilibrium. In

strong liquids � displays an Arrhenius dependence on
temperature, but in other liquids, said to be fragile, the
slowing down of the dynamics is much more pronounced.
In general the dynamics is well captured by the Vogel-
Fulcher law logð�Þ ¼ CþU=ðT � T0Þ, although nondi-
verging functional forms can also reproduce the dynamics
well [1]. As the temperature evolves, two quantities appear
to be good predictors of �: the space available for the
rattling of the particles on the picosecond time scales
[2,3], embodied by the particle’s mean square displace-
ment hu2i observable in scattering experiments, and the
difference between the liquid and the crystal entropy [4].
When extrapolated below Tg this quantity vanishes at some

TK, the Kauzmann temperature [5], which appears to cor-
respond rather well to the temperature T0 extracted from
the Vogel-Fulcher law [6]. The correlation between dy-
namics and thermodynamics has been interpreted early on
as the signature of a thermodynamical transition at TK

toward an ideal glass where the configurational entropy
associated with the number of metastable states visited by
the dynamics, or inherent structures, would vanish [7]. This
view is appealing and still influential today [8,9], al-
though it is not devoid of conceptual problems [10].
Elastic models [11–13] propose an alternative scenario of
the glass transition: fragile liquids are simply those which
stiffen under cooling, reducing the particle mean square
displacement and increasing the activation barriers that
must be overcome to flow. In this view the rapid change
of entropy in fragile liquids stem from the temperature
dependence of the high-frequency elastic moduli [14].
This is consistent with observations supporting that
fragile liquids stiffen more under cooling [12], but predicts
entropy variations several times stronger than those ob-
served [13].

Such distinct interpretations of the liquids entropy still
coexist because the latter consists of several contributions
hard to disentangle experimentally [15], in particular, the
configurational and the vibrational entropies. Phrased in
the context of energy landscape, the vibrational entropy
corresponds to the volume of phase space associated with a
typical configuration [4]. The corresponding specific heat
differs from the one of the phonon bath of a harmonic
elastic network, both due to the nonlinearity of the inter-
actions, and to the fact that the vibrational spectrum of the
inherent structure evolves with temperature. The latter
effect does not appear in high-frequency dynamic heat
capacities studies, as it requires changes of configurations
that take place on the time scale � to occur, but does
contribute to the jump of specific heat characterizing the
glass transition, whose amplitude is known to strongly
correlate to the liquid fragility [16]. The configurational
fraction of the jump in specific heat has been estimated
using calorimetry in quenched and annealed glasses [15],
measurements of elastic moduli [17], densities of states
[18–20], and nonlinear dielectric susceptibilities [21].
Overall, a great variation was found among glasses, with
a configurational fraction ranging from 15% to 80% and
apparently decaying with the liquid fragility [21].
Nevertheless, data are yet sparse and more analysis needs
to be done to quantify, respectively, the correlations be-
tween dynamics and the different contributions to the
entropy. In this Letter the relation between vibrational
entropy and particle mean square displacement is inves-
tigated. From available data on the latter quantity, it is
argued that the vibrational entropy by itself displays the
evoked correlations with the dynamics, and that these
correlations must be induced by the stiffening of some
soft degrees of freedom under cooling, rather than via an
overall rescaling of the vibrational spectrum.
On time scale t � � one may approximate a super-

cooled liquid as a solid in a well-defined configuration.
Scattering experiments yield a spectral analysis of the
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corresponding dynamics, enabling to define a density of
states. The classical linear approximation for the vibra-
tional entropy Svib per particle is then

Svib ¼ 1

N

X
!

kB

�
1þ ln

�
kBT
�h!ðTÞ

��
; (1)

where N is the number of particles, ! labels the frequency
of the 3N modes, T is the temperature, and kB the is
Bolztmann constant. In Eq. (1) the frequencies !ðTÞ are
temperature dependent, both because configurations
change with temperature, and because nonharmonicities
are present within a configuration. The latter effect implies
that Eq. (1) is an approximation, whose accuracy was
tested using inelastic neutron scattering compared with
calorimetric measurements in selenium [19], where it
was shown to be accurate throughout the glass phase.
This leads for the vibrational specific heat Cvib ¼
T@Svib=@T:

Cvib¼kB
T

X
!

�
1�@lnð!Þ

@T

�
¼3kB

�
1�

�
@lnð!Þ
@T

�
!

�
(2)

where hXð!Þi! � P
wXð!Þ=ð3NÞ. Several empirical stud-

ies have used scattering measurements to estimate the
vibrational entropy via Eq. (1) excluding nonlinear effects
by hyperquenching [18] or not [19,20]. Unfortunately
measuring the density of states at various temperature is
difficult, although it is numerically feasible at limited
viscosities [22], and has not been done systematically for
a broad range of fragility. On the other hand, it is intuitively
clear that the vibrational entropy relates to the mean square
displacement of the particles hu2i on short time scales [13],
which indicates the space available for particles to fluctu-
ate, and which is well studied experimentally. If the parti-
cles motions are decorrelated from each other, then the
volume of phase space in this harmonic approximation is

�¼ Y
i¼1...N;�

h�R2
i;�i1=2h�P2

i;�i1=2= �h/hu2i3N=2ðmkBTÞ3N=2;

where � labels the three spatial coordinates, �Ri;� is the

displacement of particle i along the direction �, �Pi;� is

the associated kinetic momentum, and m is the particle
mass. The vibrational entropy is then

Svib ¼ kB lnð�Þ ¼ 3
2kB lnðhu2iÞ þ S0 þ 3

2kB lnðTÞ; (3)

where S0 is a constant. This expression in general over-
estimates vibrational entropy, because particle motions are
correlated: h�Ri;��Rj;�i � 0. Equation (3) is therefore an

upper bound. This expression was discussed in [13], where
it was shown to overestimate at least by a factor 2 the total
jump of specific heat of orthoterphenyl. Equation (3) leads
for the specific heat in this approximation:

Cvib ¼ 3kB
2

þ 3kBT

2

@ lnðhu2iÞ
@T

: (4)

The general relation can be obtained by considering the
linear expression for the mean square displacement:

hu2i / 1

N

X
!

kBT

m!2
: (5)

Differentiating Eq. (5) with respect to temperature and
using Eq. (2) one gets

Cvib � 3kB
2

¼ �
3kBT

2

@ lnðhu2iÞ
@T

; (6)

where

� ¼ 1� 2h@ lnð!Þ
@T i!

1� 2h@ lnð!Þ
@T

1
!2i!=h 1

!2i!
: (7)

Thus Eq. (4) is exact if the effect of temperature is to
renormalize all frequencies in the spectrum by the same
factor, i.e., @ lnð!Þ=@T is independent of!, leading to� ¼
1 in Eq. (6). Nevertheless there are obvious limitations in
using Eq. (4) as it stands to estimate the vibrational specific
heat in molecular liquids.
(i) For molecules a fraction of the degrees of freedom are

very stiff, and do not play a role near the glass transition
(e.g., the vibrations of strong covalent bonds). Those de-
grees of freedom do not participate significantly to the
mean square displacement of the particles. It has been
proposed to describe molecules as a set of independent
beads [23], and to estimate the number of beads per mole-
cule via the entropy of fusion, compared to the entropy of
fusion in a hard sphere liquid ~sHS ¼ 1:16kB. This leads to a
rough estimate for the number of beads per molecule
nbead ¼ ð� ~H=TmÞ=~sHS, where Tm and � ~H are, respec-
tively, the fusion temperature and enthalpy. Following
this line of thought, Eq. (4) should be understood as the
entropy per bead, rather than per atom. We shall use the

notation Cvib to designate specific heat per beads, and ~Cvib

for molar quantities.
(ii) The assumption of overall shift of the typical inter-

action stiffness is in general violated. It is well known that,
at least for fragile liquids, the shape of the spectrum
changes with temperature. An excess of soft modes with
respect to the Debye model for the density of states, the so-
called Boson peak [24], shifts toward higher frequencies as
the system is cooled [18,25,26]. Those modes presumably
contribute significantly to the change of mean square dis-
placement and to the vibrational specific heat [18,19]. If
the increase of hu2i under heating is mostly due to the
softening of a limited number of low-frequency modes, the
gain in entropy is diminished because the short time scale
dynamics becomes more correlated, as can be computed
directly from Eq. (7). Using typical values for the Boson
peak will lead to the estimate 1=5<�< 1. We shall in
fact see below that � must be smaller than 1=2 for fragile
liquids. Henceforth I shall assume � to be constant and
independent of the liquid fragility, and later come back on
those assumptions and estimate the effect of the Boson
peak on �.
To compute the vibrational entropy from Eq. (4), one

may use the observation that the �-relaxation time scale T
and hu2i appear to be universally related [2]:
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logð�Þ ¼ f

�hu2Tg
i

hu2i
�
; (8)

where hu2Tg
i is the mean square displacement at the glass

transition Tg, extracted from the Debye-Waller factor mea-

sured at the vibrational (picosecond) time scale. In some
liquids fast relaxation occurs at the nanosecond time scale
[27], which will presumably contribute to the total entropy
as well. This putative ‘‘fast relaxational’’ entropy term is
not incorporated in this analysis. Note that � and hu2i also
appear to be strongly correlated in numerical studies of
grain boundaries [28]. Equation (8) is observed to hold on a
very wide range of liquids fragility, the scaling function
found is fðxÞ ¼ �0 þ �1xþ �2x

2 with �0 ¼ �0:424,
�1 ¼ 1:622, and �2 ¼ 12:3. Using Eq. (6) it is straightfor-
ward to obtain

Svib¼S1��
3kB
2

lnf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1þ4�2½logð�Þ��0�
q

��1g; (9)

where S1 is a constant. Replacing logð�Þ by its Volger-
Fulcher expression logð�Þ ¼ CþU=ðT � T0Þ in Eq. (9)
one obtains an expression for the vibrational entropy which
diverges logarithmically at T0 toward �1 [this is obvi-
ously unphysical and Eq. (8) or the Volger-Fulcher must
break down before T0]. Under the assumption that the
crystal entropy is sufficiently below the glass entropy
near Tg, an extrapolation of the vibrational entropy and

its logarithmic divergence must therefore cross the crystal
entropy at a temperature TK near T0. In this interpretation
of the (TK, T0) correspondence, there is nothing specific
about the crystal entropy itself, excepted that it is signifi-
cantly lower than the entropy of the liquid. When this is not
so, e.g., in hard sphere liquids where the entropy of the
liquid is lower than the entropy of the crystal above the
melting pressure, TK ¼ T0 (or the equivalent relation for
packing fractions �K ¼ �0) does not occur—TK is in fact
ill defined. The relation between the apparently distinct
temperatures TK and T0 is generally interpreted as a strong
support for the presence of a thermodynamic transition
where the configurational entropy vanishes [8]. Never-
theless, as soon as a relation between � and hu2i such as
Eq. (8) holds, those quantities are not independent, and an
apparent divergence in � must lead to an apparent fall off
in entropy at the same temperature, correlating TK and
T0—even thought no real divergences exist in this
interpretation.

Below Tg, one may assume the system to remain in the

same configuration. Neglecting nonharmonic effects in the
glass implies hu2i / T leading toCvib ¼ 3kB. This assump-
tion appears to be a reasonable approximation for T=Tg <

0:8 and up to Tg in some glasses like polybutadiene, it

nevertheless presumably overestimates the jump in specific
heat in selenium where nonlinearities are still significant
just below Tg [3]. Together with Eq. (9), this approxima-

tion leads to

�Cvib ¼ 3kB
2

�
�

m

f0ð1Þ � 1

�
; (10)

where m ¼ @ logð�Þ=@ lnTjTg
is the liquid fragility [29]

and f0ð1Þ � 26. Equation (10) thus predicts the jump in
vibrational specific heat to be strongly correlated to
fragility. For strong liquids with fragility in the twenties,
even considering the maximal bound � ¼ 1 one finds that
�Cvib is essentially negligible. Experimentally it is found
that fragility and molar jump of specific heat [16] satisfy

(for nonpolymeric glasses): m ¼ 56Tg� ~CpðTgÞ=� ~H.

From Eq. (10) we get for the slope of the relation be-
tween fragility and jump in specific heat m ¼
52�Cvib=ð3�kBÞ ¼ 52� ~Cvib=ð3nbead�kBÞ ¼ 20

� Tm� ~Cvib=

� ~H ¼ 30
� Tg�~Cvib=� ~H, where the empirical rule Tm ¼

3=2Tg was used. Thus if the jump in specific heat was

fully vibrational one would have � ¼ 0:53 � 1=2. For
fragile liquids � cannot be significantly larger than that
value, otherwise the jump of vibrational specific heat
would be larger than the total jump, which must also
contain the positive contribution of the configurational
entropy.
I now come back to the value and dependence of the

parameter �, which contains both the overall stiffening of
the structure, and the softening of a limited number of
degrees of freedom, the Boson peak. To estimate � in the
case where only the Boson peak affects the mean square
displacement, I consider the following approximation: the
density of states is assumed to follow the Debye law
Dð!Þ / !2=!3

D for !<!BP, where !D is the Debye
frequency. Dð!Þ remains of the same order Dð!Þ /
1=!D for !BP <!<!D. This corresponds to a Boson
peak (maximum in Dð!Þ=!2) at !BP. If !BPðTÞ is signifi-
cantly smaller than !D, one finds for such a spectrum
h1=!2i! � 1=ð!D!BPÞ. Furthermore I assume that the
modes near the Boson peak are those sensitive to the tem-

perature, leading to h@ lnð!Þ
@T

1
!2i! � h@ lnð!Þ

@T i!=!2
BP. Then

Eq. (7) gives � ¼ ½1� 2h@ lnð!Þ
@T i!�=½1� 2h@ lnð!Þ

@T i! !D

!BP
�. In

practice d lnð!Þ=dT < 0 (the system softens with tempera-
ture), and one gets �>!BP=!D. Typically values of the
Boson peak in the glass are !BP � !D=5 [30] leading to
�> 1=5. From this primitive estimate of the lowest bound
of �, one also gets that � increases as the system is cooled,
as does the Boson peak frequency, and is presumably
smaller in fragile liquids where the shift of the Boson
peak with temperature is pronounced. If � increases under
cooling, the apparent divergence of the extrapolated vibra-
tional entropy will only be enhanced, and the interpretation
of the T0 ¼ TK correspondence remains safe. On the other
hand, the possible systematic decay of �with fragility may
diminish the predicted correlation between the vibrational
part of the jump in specific heat and fragility. Taking our
lowest bound of � � 0:2 one still finds the vibrational
contribution to the jump of specific heat to be significant
(about 1=3) for the most fragile liquids. This is consistent
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with the observations that the vibrational fraction of the
jump of specific heat increases with fragility and represent
more than half of the jump for fragile liquids [21].

I have argued that as soon as a relation between relaxa-
tion time and mean square displacement such as Eq. (8)
exists, dynamics and vibrational entropy must be corre-
lated, leading to an alternative explanation for the T0 ¼ TK

correspondence. The amplitude of the correlations between
fragility and jump in specific heat implies that the mecha-
nism at play must include the softening under heating of a
limited number of soft degrees of freedom, and is not
simply a change of elastic moduli. This likely corresponds
to the well-known softening of the Boson peak, which has
been shown experimentally to affect significantly the ther-
modynamics of some liquids [18]. Assuming that this is the
case I find a reasonable estimate for the magnitude of the
vibrational specific heat.

It has been proposed since Adam-Gibbs [7–9] that the
relation between excess entropy and dynamics observed in
liquids indicates that as less configurations are visited,
more collective rearrangements are required to relax the
liquid, causing a rapid slowing down of the dynamics.
However, there appears to be a viable alternative possibil-
ity consistent with this observation: when a liquid is cooled
favored structures appear. This lowers the configurational
entropy but more importantly stiffens the liquid which
causes activation barriers to increase and vibrations to
decrease. In this ‘‘elastic’’ view of the glass transition the
vibrational entropy most directly reflects the liquid dynam-
ics, in consistence with the present analysis. Empirical
evidence for such a stiffening range from vibrational spec-
tra [18,25,26], mean square displacements [2,3], and elas-
tic moduli [12,31] measurements. In all cases strong
correlations with the dynamics are found. Consistent with
this approach, liquids at constant volume which are known
to stiffen significantly less [18,22] than at constant pressure
are also much less fragile [32] in the cases known.
Theoretically, the view that the stiffening of soft modes
control the dynamics is supported among other works by
the mode-coupling theory at moderate viscosities [33,34],
by geometric arguments on the nature of the Boson peak
and previtrification in hard sphere liquids [35] and by the
observations that activated events required to flow occur
mostly along soft modes belonging to the foot of the peak
[36,37]. Theoretical efforts required to assess this view
further should focus, in particular, on the still obscure
relation between soft modes and viscosity in highly viscous
liquids, and on the questions of what in its microscopic
structure determine if a liquid stiffens or not under cooling.
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