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We consider the Rényi � entropies for Luttinger liquids (LL). For large block lengths ‘, these are

known to grow like ln‘. We show that there are subleading terms that oscillate with frequency 2kF (the

Fermi wave number of the LL) and exhibit a universal power-law decay with ‘. The new critical exponent

is equal to K=ð2�Þ, where K is the LL parameter. We present numerical results for the anisotropic XXZ

model and the full analytic solution for the free fermion (XX) point.
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Luttinger liquid (LL) theory describes the low-energy
(large-distance) physics of gapless one-dimensional mod-
els such as quantum spin chains and correlated electron
models. It corresponds to a conformal field theory (CFT)
with central charge c ¼ 1 and is known to provide accurate
predictions for universal properties of many physical sys-
tems. LL theory has been applied successfully to recent
experiments on carbon nanotubes [1], spin chains [2], and
cold atomic gases [3]. A much studied example of a lattice
model that gives rise to a LL description at low energies is
the spin-1=2 Heisenberg XXZ chain

H ¼ �XL
j¼1

½�x
j�

x
jþ1 þ �y

j�
y
jþ1 þ ��z

j�
z
jþ1�: (1)

Here, �j are Pauli matrices at site j, and we have imposed

periodic boundary conditions. Recent years have witnessed
a significant effort to quantify the degree of entanglement
in many-body systems (see, e.g., [4] for reviews). Among
the various measures, the entanglement entropy (EE) has
been by far the most studied. By partitioning an extended
quantum system into two subsystems, the EE is defined as
the von Neumann entropy of the reduced density matrix �A

of one of the subsystems. The leading contribution to the
EE of a single, large block of length ‘ can be derived by
general CFT methods [5–7]. The case of a subsystem
consisting of multiple blocks requires a model dependent
treatment, but the EE can still be obtained from CFT [8].
On the other hand, little is known with regard to correc-
tions to the leading asymptotic behavior. In the following,
we consider the Rényi entropies

S� ¼ 1

1� �
lnTr��

A; (2)

which give the full spectrum of �A [9] and are fundamental
for understanding the scaling of algorithms based on ma-
trix product states [10–12]. We note that S1 is the
von Neumann entropy and S1 gives minus the logarithm
of the maximum eigenvalue of the reduced density matrix

(known as single copy entanglement [13,14]). According
to CFT, in an infinite gapless one-dimensional model, a
block of length ‘ has entropies [5–7]

SCFT� ð‘Þ ¼ c

6

�
1þ 1

�

�
ln‘þ c0�; (3)

where c is the central charge and c0� a nonuniversal con-
stant. In a finite system of length L, the block length ‘ in

(3) should be replaced with the chord distance Dð‘; LÞ ¼
L
� sin�‘L . In many lattice models, the asymptotic scaling is

obscured by large oscillations proportional to ð�1Þ‘. Some
typical examples are shown in Fig. 1, where we plot
S�ð‘; LÞ for � ¼ 1; 2;1 for the XXZ model at � ¼ �1=2
as obtained by density matrix renormalization group
(DMRG) computations. While S1 is smooth, S��1 is seen
to exhibit large oscillations. For � ¼ 1, in particular, it is
difficult to recognize the CFT scaling behavior (3). While
such oscillations have been observed in several examples
[15,16] and can be seen to arise from strong antiferromag-
netic correlations, a quantitative understanding of these
features was until now lacking. We show that these oscil-

FIG. 1 (color online). Parity effects in Rényi entropies in the
XXZ model at � ¼ �1=2. S�ð‘; LÞ for several L and � ¼
1; 2;1. The straight lines indicate the asymptotic slopes ð1þ
��1Þ=6.
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lations obey the universal scaling law

S�ð‘Þ � SCFT� ð‘Þ ¼ f� cosð2kF‘Þj2‘ sinkFj�p�; (4)

where p� is a universal critical exponent equal to 2K=�.
Here, K is the LL parameter, kF is the Fermi momentum,
and f� is a nonuniversal constant. In a finite system, the
block length ‘ in (4) is replaced by the chord distance, and
f� is multiplied by a universal scaling function F�ð‘=LÞ,
that in general depends on the parity of L. We note that in
zero magnetic field (half-filling), we have kF ¼ �=2, and
the oscillating factor in (4) reduces to ð�1Þ‘ as observed.
While we establish (4) for the particular case of the
Heisenberg XXZ chain (1), where the LL parameter is
given by K ¼ �=ð2 arccos�Þ, we expect the scaling form
to be universal because it is related to the low-energy
excitations of the model and is therefore encoded in the
continuum LL field theory description. Recent results for
the entanglement entropy confirm these expectations [17].

XX model.—This case corresponds to � ¼ 0 in (1). The
LL parameter and exponent in (4) are K ¼ 1 and p� ¼
2=�, respectively. The computation of the Rényi entropies
can be achieved by exploiting the Jordan-Wigner mapping
to free fermions, which reduces the problem to the diago-
nalization of an ‘� ‘ correlation matrix (see [18] for
details). Jin and Korepin (JK) showed [19] that Rényi
entropies can be obtained by the following contour integral
encircling the segment ½�1; 1� of the real axis

S�ð‘Þ ¼ 1

2�i

I
e�ð�Þ d lnD‘ð�Þ

d�
d�: (5)

Here, D‘ð�Þ is the determinant of a ‘� ‘ Toeplitz matrix
and e�ð�Þ ¼ 1

1�� ln½ð1þ�
2 Þ� þ ð1��

2 Þ��. In [19], the Fisher-

Hartwig formula was used to determine the asymptotic
scaling of the Rényi entropy with ‘, which agrees with
the CFT formula (3). Here, we employ the generalized
Fisher-Hartwig conjecture [20] in order to go beyond the
results of [19] and determine the subleading corrections.
The terms in the asymptotic expansion of the determinant
relevant for calculation of the Rényi entropy can be cast in
the form

D‘ð�Þ
DJK

‘ ð�Þ ¼ 1þ e�2ikF‘L�2½1þ2�ð�Þ�
k

�2ð1þ �ð�ÞÞ
�2ð� �ð�ÞÞ

þ e2ikF‘L�2½1�2�ð�Þ�
k

�2ð1� �ð�ÞÞ
�2ð�ð�ÞÞ ; (6)

where DJK
‘ is the result of [19], 2�i�ðxÞ ¼ ln½ð1þ

xÞ=ð1� xÞ�, and Lk ¼ j2‘ sinkFj. The calculation of the
integral in (5) is now straightforward. One expands lnD‘ in
(6) in powers of Lk, determines the discontinuity across the
cut ½�1; 1�, changes the integration variable from � to
�i�ð�Þ, and finally obtains the leading behavior from
the poles closest to the real axis (details will be reported
elsewhere [21]). The resulting asymptotic expression is
valid at fixed �, in the limit lnLk � �. The final result is
given by Eq. (4) with

f� ¼ 2

1� �

�2ðð1þ ��1Þ=2Þ
�2ðð1� ��1Þ=2Þ : (7)

We note that f1 ¼ 0, and therefore no oscillating correc-
tions for the Von-Neumann entropy are predicted, in agree-
ment with numerical observations.
The requirement that lnLk � � implies that the asymp-

totic behavior is only reached for very large block lengths,
e.g., at � ¼ 10, we need Lk � 20 000. In the preasymp-
totic regime, there are several sources of corrections. First,
the integral is no longer dominated by the poles closest to
the real axis, which leads to power-law corrections of the

form L�2m=�
k (with integer m), which oscillate as e�i2kF‘.

Corrections with different oscillatory behavior arise from
the higher order terms in the expansion of lnD‘ð�Þ in
powers of Lk. The first correction is proportional to
e�i4kF‘, the next to e�i6kF‘, etc. In zero magnetic field,
where kF ¼ �=2, the leading term is proportional to ð�1Þ‘
while the second does not oscillate. Hence, there is a
subleading constant background in addition to the leading
oscillatory behavior. In the limit � ! 1, all these terms
become of the same order so that we need to resum the
entire series that arises from expanding lnD‘ð�Þ and then
carrying out the � integral. In the zero magnetic field case,
we thus obtain

S1ð‘Þ � SJK1 ð‘Þ ¼
(
�2

12
1

lnbLk
‘odd;

� �2

24
1

lnbLk
‘even:

(8)

Here, the constant b � 7:1 has been fixed by summing
certain contributions to all orders in 1=ðlnLkÞ and agrees
well with numerical results [22].
Numerical results for the XX model can be obtained by

diagonalizing the correlation matrix both infinite and finite
systems. We first present the results for infinite systems.
We consider only the model in zero magnetic field and plot
the quantity

d�ð‘Þ � S�ð‘Þ � SCFT� ð‘Þ (9)

where the value for the constant contribution c0� in SCFT� ð‘Þ
is taken from [19]. According to Eq. (4) for kF ¼ �=2,
d�ð‘Þ ’ ð�Þ‘ð2‘Þ�p�f�. In Fig. 2, we compare the abso-
lute value of d�ð‘Þ for � ¼ 2; 5; 20;1 and block sizes ‘ up
to 4000 sites to our asymptotic results (4) and (8). For � ¼
2, the curves for odd and even ‘ are practically indistin-
guishable (the line corresponding to the analytical result is
invisible under the data points). For � ¼ 5, we still obtain
power laws with the exponent p5 ¼ 2=5, but the curves are
not as symmetrical as for � ¼ 2 because subleading cor-
rections become visible. Increasing � further, the devia-
tions of d�ð‘Þ for ‘ < 4000 from the asymptotic behavior
become quite pronounced. This is shown in Fig. 2 for the
case � ¼ 20, where the leading asymptotic result (straight
line) is seen to be a poor approximation to d�ð‘Þ for even ‘.
Including the subleading corrections gives curves perfectly
covered by data in Fig. 2. The last panel in Fig. 2 shows the
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result in the � ¼ 1. The numerical results are seen to be in
perfect agreement with Eq. (8).

We now turn to finite systems. We numerically deter-

mined the quantity [recall that Dð‘; LÞ ¼ L
� sin�‘L ]

F�ð‘=LÞ ¼ ½S�ð‘; LÞ � SCFT� ð‘; LÞ�f�1
� Dð‘; LÞ2=�; (10)

[for � ¼ 1, we multiply by lnbDð‘; LÞ] for a variety of
values of � and system sizes ranging from L ¼ 17 to L ¼
4623. We observe that there is data collapse for any L on
two scaling functions for ‘ odd and even, respectively.
Results for the cases � ¼ 2;1 and odd L are shown in
Fig. 3. The quality of the collapse is impressive considering
that there are no adjustable parameters and that the plots
contain millions of points ranging over 3 orders of magni-
tude in both ‘ and L. For � ¼ 2, we observe that F2ðxÞ ¼
� cos�x (these are shown as continuous curves in Fig. 3).
We currently have no analytical derivation of this scaling
function. For other values of �, we obtain similar data
collapse, but the quality decreases with increasing �, in-
dicating the presence of other corrections. For even L, we
obtain different scaling functions—F�ðxÞ then is almost
constant (see below).

XXZ model and DMRG.—To characterize the XXZ
model in the gapless phase with �1 � �< 1, we per-
formed extensive DMRG calculations at finite L. We
used the finite-volume algorithm keeping � ¼ 800 states
in the decimation procedure. This rather large value of � is
required to obtain a precise determination of the full spec-
trum of the reduced density matrix in the case of periodic
boundary conditions. The data we have used in our analysis
can be considered as numerically exact. Hence, the main
limitation as compared to the XX case is the relatively
small value of L accessible by DMRG (we considered
21 � L � 81 for odd L and 20 � L � 80 for even L).
Another complication stems from the fact that the value
of the constant contribution c0� to the Rényi entropy is not
known analytically for � � 0 [23]. We obtain it by fitting

our numerical data. The results are shown in Fig. 4. The
data for � ¼ 0 is in good agreement with the exact results
of [19] (full line), establishing the correctness of our fitting
procedure and the reliability of DMRG. The multiplicative

constant c� ¼ eð1��Þc0� in the moments of the density

matrix Tr��
A ¼ ca‘

c=6ð��1=�Þ in Fig. 4 shows an exponen-
tial decay with �, except for � very close to 1. Hence, c�
can essentially be absorbed into a rescaled block length ‘
as was pointed out in [9,24].
Having obtained the constant contribution c0�, one can

determine the universal scaling functions F�ðxÞ. We
present results for both even and odd L and a number of
representative values of � and � in Fig. 5. We find that the
data collapse is very good for all cases. This is remarkable
given the limited system sizes accessible by DMRG. We
note that, as expected, the data collapse becomes poor in
the vicinity of the two isotropic points � ¼ �1. At � ¼
�1, there is a marginal operator (see, e.g., [15]) that gives
rise to well-known logarithmic corrections to scaling for

FIG. 2 (color online). Corrections to scaling d�ð‘Þ ¼ S�ð‘Þ �
SCFT� ð‘Þ for the XX model and four different values of �. Red
circles and black squares correspond to even and odd ‘, respec-
tively.

FIG. 4 (color online). Left: The additive constant in the Rényi
entropies c0� (bottom) and the multiplicative constant c� for the
moments Tr��

A (top in log scale) as function of � at fixed �. The
drawn lines are the exact values for � ¼ 0. Right: c0� as function
of � at fixed �.

FIG. 3 (color online). Corrections to scaling in the finite length
XX model for odd L. F2ðxÞ and F1ðxÞ (x ¼ ‘=L) obtained from
69 different systems with lengths in the range 17 � L � 4623
exhibit perfect data collapse.
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correlation functions. In the ferromagnetic limit � ! 1,
the model loses conformal invariance (the dispersion rela-
tion becomes quadratic) and is no longer described by a
LL. Hence, none of the results presented here is expected
to hold.

The critical Ising chain has no strong antiferromagnetic
correlations, and we therefore expect the corrections to
scaling to be nonoscillatory. It is easy to see that this is
indeed the case. Igloi and Juhasz [25] showed that the EEs
of the XY chain can be expressed in terms of the EEs of
two Ising chains. At the quantum critical point, this relation
reads SXX� ð2‘; 2LÞ ¼ 2SI�ð‘; LÞ, where SI� refers to the
critical Ising chain. This implies that the Rényi entropies
in the Ising chain are just one half of the corresponding
entropies in a XX chain of twice the block length and twice
the system size. As both ‘ and L are even, our results for
the XX model imply that the corrections to scaling are

nonoscillatory and decay as ‘�2=�. This agrees with nu-
merical computations.

Conclusions.—In this Letter, we considered the Rényi
entropies for the critical spin-1=2 Heisenberg XXZ chain
with periodic boundary conditions. By a combination of
analytic and numerical techniques, we computed oscillat-
ing corrections to scaling which are expected to be univer-
sal. These are parametrized in terms of the Luttinger
parameter K and the Fermi momentum kF. We argued
that our results hold generally for Luttinger liquids. In
the case of open boundary conditions, a similar relation-
ship is expected to hold, but with the replacement K !
K=2 (see also [15]). It would be interesting to prove this at
least in the special case of free fermions. Finally, we would
like to comment on our results in light of a recent proposal
[8], that one way of distinguishing between different theo-
ries with the same central charge is to consider the entan-
glement of multiple blocks. Our results establish that it is

sufficient to consider a single block once one takes into
account the universal subleading oscillatory corrections.
We thank J. Cardy for very helpful discussions. This

work was supported by the ESF network INSTANS (P. C)
and the EPSRC under Grant No. EP/D050952/1
(F. H. L. E.).

[1] H. Ishii et al., Nature (London) 426, 540 (2003).
[2] M. Klanjsek et al., Phys. Rev. Lett. 101, 137207 (2008);

B. Thielemann et al., ibid. 102, 107204 (2009).
[3] B. Paredes et al., Nature (London) 429, 277 (2004);

T. Kinoshita et al., Science 305, 1125 (2004); A.H. van
Amerongen et al., Phys. Rev. Lett. 100, 090402 (2008).

[4] L. Amico et al., Rev. Mod. Phys. 80, 517 (2008); J. Eisert
et al., ibid. 82, 277 (2010); P. Calabrese, J. Cardy, and B.
Doyon, J. Phys. A 42, 500301 (2009).

[5] C. Holzhey et al., Nucl. Phys. B424, 443 (1994).
[6] G. Vidal et al., Phys. Rev. Lett. 90, 227902 (2003); J. I.

Latorre et al., Quantum Inf. Comput. 4, 48 (2004).
[7] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002;

J. Phys. A 42, 504005 (2009).
[8] S. Furukawa et al., Phys. Rev. Lett. 102, 170602 (2009);

P. Calabrese et al., J. Stat. Mech. (2009) P11001; V. Alba
et al., Phys. Rev. B 81, 060411(R) (2010).

[9] P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329
(2008).

[10] N. Schuch et al., Phys. Rev. Lett. 100, 030504 (2008); D.
Perez-Garcia et al., Quantum Inf. Comput. 7, 401 (2007).

[11] L. Tagliacozzo et al., Phys. Rev. B 78, 024410 (2008).
[12] F. Pollmann et al., Phys. Rev. Lett. 102, 255701 (2009).
[13] J. Eisert and M. Cramer, Phys. Rev. A 72, 042112 (2005);

I. Peschel and J. Zhao, J. Stat. Mech. (2005) P11002.
[14] R. Orus et al., Phys. Rev. A 73, 060303(R) (2006).
[15] N. Laflorencie et al., Phys. Rev. Lett. 96, 100603 (2006);

J. Phys. A 42, 504009 (2009).
[16] G. De Chiara et al., J. Stat. Mech. (2006) P03001; A.

Laeuchli and C. Kollath, ibid. (2008) P05018; B. Nienhuis
et al., ibid. (2009) P02063; H.-Q. Zhou et al., Phys. Rev. A
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