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Quantum parameter estimation has many applications, from gravitational wave detection to quantum

key distribution. The most commonly used technique for this type of estimation is quantum filtering, using

only past observations. We present the first experimental demonstration of quantum smoothing, a time-

symmetric technique that uses past and future observations, for quantum parameter estimation. We

consider both adaptive and nonadaptive quantum smoothing, and show that both are better than their

filtered counterparts. For the problem of estimating a stochastically varying phase shift on a coherent

beam, our theory predicts that adaptive quantum smoothing (the best scheme) gives an estimate with a

mean-square error up to 2
ffiffiffi
2

p
times smaller than nonadaptive filtering (the standard quantum limit). The

experimentally measured improvement is 2:24� 0:14.
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Quantum parameter estimation (QPE) is the problem of
estimating an unknown classical parameter (or process)
which plays a role in the preparation (or dynamics) of a
quantum system [1,2], and is central to many fields includ-
ing gravitational wave interferometry [3], quantum com-
puting [4], and quantum key distribution [5]. The
fundamental limit to the precision of the estimate in QPE
is set by quantum mechanics [1,2]. Thus one of the key
issues in QPE is the development of practical method-
ologies which allow measurements to approach or exceed
the standard quantum limit (SQL) for a given measurement
coupling [6–12]. Because of its wide-ranging technologi-
cal relevance, the prime example of QPE is estimating an
optical phase shift [13–20].

Apart from some theoretical papers [19,20], work in this
area of QPE has concentrated upon the problem of estimat-
ing a fixed, but unknown phase shift, which can be thought
of as preparing the quantum state with an average phase
equal to this parameter. It was shown theoretically [15] that
for this problem adaptive homodyne measurements cou-
pled with an optimal estimation filter can yield an estimate
with mean-square error smaller than the standard quantum
limit (as set by perfect heterodyne detection). This was
demonstrated experimentally in Ref. [16] using very weak
coherent states (for which the factor of improvement is at
most 2). More recent theory and experiment have shown
that interferometric measurements with photon counting
can also be improved using adaptive techniques [17,18].

A far richer, and in many cases more experimentally
relevant, problem of quantum phase estimation arises when

the phase evolves dynamically under the influence of an
unknown classical stochastic process [19,20]. The general
problem of estimating a classical process dynamically
coupled to a quantum system under continuous measure-
ment has recently been considered by Tsang [21], who
introduced three main categories of quantum estimation:
prediction or filtering, smoothing, and retrodiction. Of
those, prediction or filtering is a causal estimation tech-
nique that can be used in real-time applications [22].
Smoothing and retrodiction are acausal and so cannot be
used in real time, but they can be used for off-line data
processing or with a delay corresponding to the estimation
time. Smoothing, in which the signal is inferred at a point
in time based on data taken both before and after that time,
is the only time-symmetric estimation technique. As a
consequence, it can be more precise than the time asym-
metric techniques of filtering or retrodiction [20,21]. Such
a result is very significant for quantum sensing applications
where it is more important to have precise rather than real-
time estimates.
Here we present the first experimental demonstration of

QPE using quantum smoothing. Specifically, we consider
estimation of the phase of a continuous optical field, gen-
eralizing the theory of Ref. [19] to a more general classical
phase noise process, and to smoothing (rather than filter-
ing). According to our theory, adaptive measurements and
smoothing both offer improvements over the alternative
(nonadaptive and filtering, respectively). Moreover, using
both together offers the maximum improvement, with a
mean-square phase error smaller than the standard (non-
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adaptive, filtered) quantum limit by a factor of up to 2
ffiffiffi
2

p
in

theory. We verify these predicted improvements experi-
mentally, for the first time in every case, and find a maxi-
mum improvement by a factor of 2:24� 0:14 over the
SQL.

Figure 1 illustrates the system under consideration. The
goal is to form the optimal estimate �ðtÞ of the system
phase ’ðtÞ of a weak coherent state in the presence of noise
in the measurement and classical noise in the system phase.
The precision of the estimate is quantified by the mean-
square error between the estimate and the actual phase such
that �2 � h½�ðtÞ � ’ðtÞ�2i.

Unlike previous adaptive phase estimation experiments
[16,18], we compare the phase estimate to the actual
system phase in order to directly measure the error in
estimation. This is achieved by deliberately imposing clas-
sical phase noise via an electro-optic modulator (EOM), as
indicated in Fig. 1(a). A Ti:sapphire laser operating at
860 nm is used to drive the experiment. The arrangement
of AOMs shown in Fig. 1(a) is used to generate a pair of
phase modulation sidebands at �5 MHz such that it is
equivalent to a weak coherent state with a photon flux
N ¼ j�j2 of order 106 photons per second.

The phase noise is applied using a EOM driven by an
Ornstein-Uhlenbeck (OU) [23] noise source. The phase
variation is

d’ðtÞ ¼ ��’ðtÞdtþ ffiffiffiffi
�

p
dVðtÞ; (1)

where dV is a Wiener increment and � is the inverse
coherence time. For this experiment � is of order
104 rad=s, so there are about 100 photons per coherence

time. We record the imposed voltage at the monitor port of
the high voltage amplifier (’0 in Fig. 1). The phase devia-
tion arising from that voltage is calibrated via the half-
wave voltage of the EOM and used as our measure of the
true system phase ’.
An arbitrary quadrature of the field of interest can be

measured with a balanced homodyne detector, in which the
field of interest is interfered with a 1.5 mW local oscillator
on a beam splitter. Both outputs of the beam splitter are
detected and the resulting measurements are subtracted to
form the homodyne photocurrent IðtÞ [24]. The detection
efficiency (including homodyne fringe visibility of 97%,
detector quantum efficiency of 98%, and optical transmis-
sion of 97%) was in excess of 89% in all measurements and
the electronic noise floor was 11 dB below the shot noise of
the measurements. In all cases, the homodyne detector is
dc locked to ensure that the deliberately imposed OU noise
dominates the uncertainty in the phase.
The adaptive phase estimation system is illustrated in

Fig. 1(b). The output of the homodyne detector is elec-
tronically demodulated to give IðtÞ which is then fed into
the feedback filter. This yields a voltage ’̂0, which is stored
for later data analysis and also fed back so as to imprint a
phase ’̂ / ’̂0 on the optical local oscillator (LO) using a
waveguide modulator (WGM). That is, the intermediate
phase estimate ’̂ is the phase of the measured quadrature.
Because ’ � ’̂, we can use a linearized approximation

for the homodyne photocurrent:

IðtÞdt ¼ 2j�j½’ðtÞ � ’̂ðtÞ�dtþ dWðtÞ; (2)

where dWðtÞ is Wiener noise arising from the quantum
vacuum fluctuations. We define the instantaneous estimate
�ðtÞ to be the best estimate of ’ðtÞ which can be made
using only the data taken in the time interval ½t; tþ dtÞ:

�ðtÞ :¼ ’̂ðtÞ þ IðtÞ=2j�j (3)

¼ ’ðtÞ þ dWðtÞ
dt

1

2
ffiffiffiffiffiffiffi
N

p : (4)

To obtain an intermediate estimate ’̂ with a finite amount
of noise it is necessary to time average the instantaneous
estimate. This can be achieved by using a simple integrator
on IðtÞ [19], but for practical reasons we use a linear low-
pass filter:

’̂ðtÞ ¼
Z t

�1
�e!0ðs�tÞIðsÞ=2

ffiffiffiffiffiffiffi
N

p
ds: (5)

We work in the range where the ratio of cut-off frequency
(!0 ¼ 1:5� 105 s�1) to feedback gain (�) varies from
0.02 to 0.09, so we can assume that !0 � �. In this limit,
it is easy to verify from the above equations that the
intermediate estimate reduces to the filter used in Ref. [19]:

’̂ðtÞ ¼
Z t

�1
�e�ðs�tÞ�ðsÞds: (6)

The intermediate estimate ’̂ðtÞ of ’ðtÞ is always a
filtered estimate, because it is used in a causal feedback
loop. The theory of Ref. [19] also used filtering to obtain

FIG. 1 (color online). Schematic diagrams showing (a) signal
and local oscillator generation, (b) adaptive phase estimation and
(c) dual-homodyne phase estimation. Low-pass filter (LPF),
mode-cleaning cavity (MCC), and acousto-optic modulator
(AOM).
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the final phase estimate for ’ðtÞ. That is, the final estimate
for time twas based only on the data obtained up to time t.
However, it is possible to obtain a better phase estimate by
smoothing: using the data after time t also. Here we can
assume that data for an infinite period of time before and
after t can be used, because the data run time of 10�2 s is
long compared to the averaging time, which is & 10�4 s.

Let us denote by ��ðtÞ and �þðtÞ the phase estimates
obtained from data obtained before and after time t, re-
spectively. Following Ref. [19], we consider estimates that
are weighted averages of the instantaneous estimates:

��ðtÞ ¼ ���
Z �1

t
�ðsÞe���ðs�tÞds: (7)

The deviation of these from the actual phase is then

��ðtÞ � ’ðtÞ ¼ ���
Z �1

t
e���ðs�tÞ½’ðsÞ � ’ðtÞ�ds

� ��
2

ffiffiffiffi
N

p
Z �1

t
e���ðs�tÞdWðsÞ: (8)

The forwards estimate,��ðtÞ corresponds to the causal (or
filtered) estimate. A weighted average of the forwards and
backwards estimates can be used to construct the time-
symmetric (or smoothed) estimate �ðtÞ ¼ w���ðtÞ þ
wþ�þðtÞ, the variance of which is

�2 ¼ w2�h½��ðtÞ � ’ðtÞ�2i þ w2þh½�þðtÞ � ’ðtÞ�2i
þ 2w�wþh½��ðtÞ � ’ðtÞ�½�þðtÞ � ’ðtÞ�i: (9)

This can be evaluated using the definition of the OU
process for the system phase (1). From the time symmetry
of this process, the mean-square errors in�þðtÞ and��ðtÞ
are the same:

�2� ¼ �

2ð�� þ �Þ þ
��
8N

; (10)

while the correlation between the forwards and backwards
estimates is

h½��ðtÞ � ’ðtÞ�½�þðtÞ � ’ðtÞ�i ¼ ��

2ð�� þ �Þð�þ þ �Þ :
(11)

By symmetry, the Eq. (9) expression is minimized for
�� ¼ �þ ¼ � and w� ¼ wþ ¼ 1=2, which gives

�2 ¼ �ð�þ 2�Þ
4ð�þ �Þ2 þ �

16N
: (12)

Equations (10) and (12) are simplified greatly in the limit

� � �=ð2 ffiffiffiffiffiffiffiffiffiffi
�N

p Þ � 1, which is a good guide for our ex-
periment where � � 0:2. In this limit, the optimal value of

� in Eq. (10) is 2
ffiffiffiffiffiffiffiffiffiffi
�N

p
, giving the minimum variance

�2� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=N

p
=2. The relative corrections are Oð�2Þ.

Changing to smoothing reduces the variance by a factor

of 2 to �2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=N

p
=4.

We compare the results of the adaptive technique to the
standard technique for phase estimation, dual-homodyne
detection, illustrated in Fig. 1(c). It incurs the same noise
penalty as heterodyne detection. The dual-homodyne data
[Iþ and I� in Fig. 1(c)] can be used to form an instanta-
neous estimate, comparable to Eq. (3), via

�sðtÞ ¼ arg½IþðtÞ þ iI�ðtÞ�: (13)

This can be shown to give an estimate which is effectively
the same as Eq. (4), but with an additional noise penalty
incurred from measuring both quadratures: N must be
replaced byN s ¼ N =2 [19]. The mean-square errors for
dual-homodyne measurements are simply obtained by
making this substitution in Eqs. (10) and (12).
Comparing these to the adaptive results, the latter thus

give a reduction in the variance by a factor of
ffiffiffi
2

p
for

both filtering and smoothing. The SQL is set by nonadap-

tive filtering, and equals �2
s� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�=N s

p
=2.

The measured and predicted mean-square errors for the
four different estimation techniques are shown in Fig. 2.
The values of � and � are determined from the calibrated
measurements of the system phase ’ðtÞ. The photon num-
ber, N ¼ j�2j, is from the measured amplitude of the
coherent state relative to the quantum noise limit, while
� is varied in the experiment as indicated in Fig. 2. Each
data run is 10 ms long, and error bars are the standard
deviation of multiple data sets. We performed the adaptive
estimates ��ðtÞ not by averaging �ðtÞ as in Eq. (7), but
rather by averaging ’̂ðtÞ. This gives more stable results,
and is justified since, in the limit � � 1, the optimal value

of � in Eq. (5) is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�N

p
[19]. In the regime of the

experiment, this � is much greater than �, so the extra
averaging in Eq. (6) is negligible.
Figure 2 shows good agreement between theory and

experiment for all the estimation techniques. It demon-
strates that phase estimation by quantum smoothing is
significantly better than that from quantum filtering. As
predicted, the improvement is nearly a factor of 2 at the
optimum value of �. Figure 2 also shows the first experi-
mental verification of the quantum theory of continuous
adaptive phase estimation [19]. As predicted, adaptive
phase estimation outperforms dual-homodyne measure-

ment by a factor of approximately
ffiffiffi
2

p
. The theory curves

here take into account the known imperfections. However,
the horizontal line indicating the SQL �2

s� is defined (as
above) in terms of the actual photon flux, and corresponds
to what would be achievable by ideal dual-homodyne
filtering. Note that adaptive measurements perform better
than the SQL for both types of estimator.
Figure 3 shows the optimal mean-square errors in the

filtered and smoothed adaptive estimates for four different
values of measured photon number, spanning an order of
magnitude betweenN � 106 s�1 andN � 107 s�1. The
results confirm that quantum smoothing outperforms quan-
tum filtering over a wide range of photon numbers, as
predicted by theory. As in Fig. 2, the SQL is set by ideal
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dual-homodyne filtering, while the other theory lines are
for the actual (nonideal) experiment. As predicted, adap-
tive measurements outperform the SQL.

In summary, we have demonstrated experimentally and
theoretically that estimation of the phase of an optical field
in the presence of classical noise using quantum smoothing
is superior to the equivalent quantum filtered approach. We
have also demonstrated experimentally for the first time
that continuous adaptive measurements perform better than
the standard quantum limit for both types of estimator.
Combining quantum smoothing with adaptive measure-
ments gives the maximum improvement over the standard
(perfect nonadaptive, filtering) quantum limit. The experi-

mental improvement of a factor of 2:24� 0:14 in the
mean-square error compares well with the theoretical

maximum of 2
ffiffiffi
2

p
. These insights and techniques will be

applicable to the even more interesting case of estimation
using nonclassical states, where the improvement can be
arbitrarily large.
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FIG. 2 (color online). The experimental and theoretical vari-
ance �2 of the four phase estimation techniques: filtered dual-
homodyne (DH) and adaptive phase (AP) in part (a); and
smoothed DH and AP in part (b). Parameters are: �DH ¼
1:6218� 104 rad=s, �DH ¼ 6:4593� 104 rad=s, N DH ¼
1:3235� 106 s�1, �AP ¼ 1:5868� 104 rad=s, �AP ¼ 6:1451�
104 rad=s, N AP ¼ 1:3499� 106 s�1.

FIG. 3 (color online). The variance �2 of the adaptive phase
estimation for quantum filtering and smoothing as a function of
photon number N , compared to the relevant theoretical pre-
dictions, and the theoretical predictions for nonadaptive mea-
surements.
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