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We present the Maxwell superalgebra, an N ¼ 1, D ¼ 4 algebra with two Majorana supercharges,

obtained as the minimal enlargement of a Poincaré superalgebra containing the Maxwell algebra as a

subalgebra. The new superalgebra describes the supersymmetries of generalized N ¼ 1, D ¼ 4 super-

space in the presence of a constant Abelian supersymmetric field strength background. Applying the

techniques of nonlinear coset realization to the Maxwell supergroup we propose a new �-invariant

massless superparticle model providing a dynamical realization of the Maxwell superalgebra.
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Introduction.—Recently, after the discovery of the cos-
mic microwave background (CMB) and the mystery of
dark energy [1], it is interesting to consider some field
densities uniformly filling space-time. One such modifica-
tion of empty Minkowski space is obtained by adding a
constant electromagnetic (EM) field background, parame-
trized by the additional field degree of freedom f��. The

presence of a constant EM field modifies the Poincaré
symmetries into the so-called Maxwell symmetries [2–9].
The difference from the Poincaré algebra consists in the
de Sitter-like substitution (recall that dark energy is some-
times described by the addition of a cosmological term, or
replacement of ‘‘empty’’ Minkowski space by de Sitter
space)

½P�; P�� ¼ iZ��: (1)

The additional tensorial generators Z�� are, however,

Abelian and satisfy the relations

½M��;Z���¼�ið���Z������Z��þ���Z������Z��Þ;
½P�;Z���¼0; ½Z��;Z���¼0: (2)

The Bacry-Combe-Richard (BCR) algebra [2] is a sub-
algebra of the Maxwell algebra in which Z�� takes fixed

numerical values. In the same way as the Poincaré algebra
is the R ! 1 limit (R ¼ dS radius) of de Sitter algebra, the
Maxwell algebra M4 ¼ ðM��; P�; Z��Þ given in (1) and

(2) can be obtained by a suitable contraction of the de Sitter
algebra ð ~M��; P�Þ enlarged in a semisimple way by the

Lorentz generators M�� (see also [8]). Performing the

rescaling P� ! ��1P�, ~M�� ! ��2Z��, M�� ! M��

one obtains in the limit � ! 0 the Maxwell algebra M4.
In order to interpret the Maxwell algebra and the corre-

sponding Maxwell group, a Maxwell group-invariant par-
ticle model on the extended space-time (x�, ���) with the
translations of���, generated by Z�� has been studied [6–

9]. The interaction term described by a Maxwell-invariant
one form introduces new tensor degrees of freedom f��—

momenta conjugate to ���. In the equations of motion
they play the role of a background EM field which is
constant on-shell and leads to a closed, Maxwell-invariant
two form.
The aim of this Letter is to obtain the supersymmetric

extension of the Maxwell symmetries with new N ¼ 1
superMaxwell algebra and to investigate the corresponding
superMaxwell-invariant massless superparticle model.
(For massive superparticles one has to consider the N ¼
2 supersymmetries in D ¼ 4 [10].) Analogously to the
Maxwell case, one can introduce the generalized phase
space with coordinates (x�, 	�,���,��,�) and conjugate

momenta (p�, 
�, f��, ~��, D). Since (���, ��, �) are

cyclic coordinates the conjugate momenta (f��, ~��,D) are

constant on shell describing the constant Abelian SUSY
N ¼ 1 gauge field background. In this way one gets the
massless superparticle interacting with x independent field
strength superfield W�ð	Þ

W�ð	Þ ¼ i~�� � i

2
f��ð �	���Þ� � iDð �	�5Þ�: (3)

We see, therefore, that the superMaxwell symmetries de-
scribe the geometry of N ¼ 1 superspace (x�, 	�) in the
presence of constant SUSY gauge field background (f��,
~��, D). It is also noted that the superparticle model is
invariant under � transformations, which eliminate half
of the Grassmann superspace coordinates 	�.
Particle model with Maxwell symmetry.—To formulate a

relativistic particle model, invariant under the Maxwell
group, it is convenient to use the nonlinear coset realiza-
tions method [11]. The coset G=H ¼ Maxwell=Lorentz

which we employ is parametrized as in [6–9], g ¼
eiP�x

�
eði=2ÞZ���

��
. The basic Maurer-Cartan (MC) form is
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� ¼ �ig�1dg ¼ P�L
� þ 1

2Z��L
��
Z þ 1

2M��L
��
M ; (4)

where

L� ¼ dx�; L
��
Z ¼ d��� þ 1

2ðx�dx� � x�dx�Þ;
L
��
M ¼ 0:

(5)

The particle action invariant under the Maxwell algebra (1)
and (2) is described by the following Lagrangian:

L ¼ _x� _x�

2e
�m2

2
eþ 1

2
f��L

���
Z ; (6)

where e is the einbein implementing the diffeomorphism
invariance, f�� is a tensorial variable canonically conju-

gate to the new coordinates ���, and L
���
Z is the pullback

of L
��
Z . In the proper time gauge, one obtains from (6) the

equations of motion

m €x� ¼ f�� _x
�; _f�� ¼ 0; _��� ¼�1

2ðx� _x� � x� _x�Þ:
(7)

They describe the motion of a particle in an EM field f��,

which is constant on shell. The EM potential is described
by the one form A ¼ 1

2 f��L
��
Z . In the closed two form

field strength

F ¼ dA ¼ 1
2f��L

� ^ L� þ 1
2df�� ^ L

��
Z (8)

the second term vanishes on shell due to (7) and the field
strength components are constants f��.

From Maxwell algebra to superMaxwell algebra.—We
start with the following extension of the superPoincaré
algebra inD ¼ 4 with Majorana superchargesQ� (�, 
 ¼
1, 2, 3, 4)

fQ�;Q
g ¼ 2ðC��Þ�
P�; ½P�; P�� ¼ iZ��: (9)

In order to verify the (P, Q, Q) Jacobi identity, P� cannot

commute with Q� but requires a new Majorana charge ��

defined as

½P�;Q�� ¼ �i�
ð��Þ
�: (10)

One can show from Jacobi identities that

fQ�;�
g ¼ 1
2ðC���Þ�
Z��: (11)

��, as well as Q�, transforms as a spinor under Lorentz
transformations,

½M��;Q�� ¼ � i

2
ðQ���Þ�;

½M��;��� ¼ � i

2
ð����Þ�:

(12)

Together with relations (1) and (2) the superalgebra G ¼
ðM��; P�; Z��;Q�;��Þ is shown to close due to the

gamma matrix identity ðC��Þð�
ðC��Þ��Þ ¼ 0 (�
��

symmetric sum) valid in D ¼ 4. G defines the minimal
Maxwell superalgebra containing the Maxwell algebra
M4 as a subalgebra.

Consistently with the Jacobi relations one can also add a
scalar central charge B in (11) as

fQ�;�
g ¼ 1
2ðC���Þ�
Z�� þ ðC�5Þ�
B (13)

and obtain the centrally extended algebra ~G ¼
ðM��; P�; Z��;Q�;��; BÞ. It can be shown that the central
charge B corresponds to the constant mode of an auxiliary
scalar in the ‘‘off shell’’ supersymmetric Uð1Þ gauge field
theory.
Two Casimir operators of the Maxwell algebra obtained

in [2,3],

C 2 ¼ Z��Z
��; C3 ¼ Z��

~Z��; ð ~Z�� � 1
2�

����Z��Þ
(14)

are also Casimir operators of the Maxwell superalgebra G,
but the third mass Casimir operator requires a fermionic
term

C ¼ P2 þM��Z
�� þ i�C�1Q: (15)

For the centrally extended algebra ~G the Casimir operator
C ceases to commute with Q and �. However, in the
presence of an additional chiral symmetry charge B5 sat-
isfying

½B5; Q�� ¼ �iðQ�5Þ�; ½B5;��� ¼ ið��5Þ�; (16)

we can construct the extension of Casimir C

~C ¼ P2 þM��Z
�� þ i�C�1Q� B5B; (17)

which becomes a Casimir operator of the algebra G5 ¼
ðM��; P�; Z��;Q�;��; B; B5Þ. The super algebra G5 will

be realized in a massless particle model in the next section.
Massless superparticle model with Maxwell supersym-

metry.—We construct a massless superparticle model using
a nonlinear realization of the superMaxwell algebra G5.
The supergroup element ~g is parametrized as

~g ¼ eði=2ÞZ���
��
eiP�x

�
ei���

�
eiQ�	

�
eiB� (18)

using the supercoset G=H ¼ G5=ðM� B5Þ [12]. Here the
chiral generator B5 is in the unbroken subgroup because we
construct a massless particle. The components of the MC

form ~� ¼ �i~g�1d~g are

~L� ¼dx�þ ið �	��d	Þ; ~L� ¼ d	�; ~L
��
M ¼ 0;

~L��
Z ¼d���þ ið �	���Þ�d��þ1

2
ðx�dx��x�dx�Þ

þ i

2
ð �	�����	Þ

�
dx�þ i

6
ð �	��d	Þ

�
;

~L�
� ¼d��þð��	Þ�

�
dx�þ i

3
ð �	��d	Þ

�
; ~L5 ¼ 0;

~LB ¼d�þ ið �	�5Þ�d��þ i

2
ð �	�5��	Þ

�
dx�þ i

6
ð �	��d	Þ

�

(19)

and verify the corresponding MC equations
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d ~L� ¼ i �~L�� ~L� ~L��
M

~L�; d ~L��
M ¼� ~L��

M ���
~L��
M ;

d ~L
��
Z ¼ ~L� ~L� þ i �~L��� ~L� � ~L

��
M ���

~L��
Z � ~L

��
Z ���

~L��
M ;

d ~L� ¼ ð�5
~LÞ� ~L5 � 1

4
~L
��
M ð���

~LÞ�;
d ~L�

� ¼ ð��
~LÞ� ~L� � ð�5

~L�Þ� ~L5 � 1
4
~L
��
M ð���

~L�Þ�;
d ~LB ¼ i �~L�5

~L�; d ~L5 ¼ 0: (20)

These MC equations provide a dual formulation of the
superMaxwell algebra introduced in the previous section.

The massless superparticle action invariant under the
superMaxwell group is

L ¼ �2
�

2e
þLI�; LI ¼ 1

2f��
~L
��
Z þ i��

~L�
� þD ~LB;

(21)

where �� ¼ _x� þ i �	��
_	 is the pullback of ~L� to the

world line and e describes the einbein. Here f��, ��, D

are dynamical variables transforming as Lorentz tensor,
Majorana spinor and scalar, respectively. The interaction
Lagrangian can be written explicitly as

L I� ¼ 1
2f��

_��� þ i~��
_�� þD _�þ ��A� þ _	� ~A�;

(22)

where

~� � ¼ �� þDð �	�5Þ� þ 1
2f��ð �	���Þ� (23)

and the Uð1Þ SUSY gauge potentials are

~A� ¼ ið �	��Þ�
�
�1

2f��x
�

þ i

�
2
3
~�� 1

8
�	���f

�� � 1
4D

�	�5

�
��	

�
;

A� ¼ �1
2f��x

� þ i

�
~�� 1

4
�	���f

�� � 1
2D

�	�5

�
��	:

(24)

The variation of L with respect to (���, ��, �) gives

_f �� ¼ _~�� ¼ _D ¼ 0; (25)

i.e., the Uð1Þ superpotentials (24) are functions of the
superspace coordinates (x�, 	�) and the variables (f��,
~��, D) which take constant values on shell. The variation

of L with respect to (f��, ~��, D) gives the equations for

the variables (���, ��, �)

ð ~L��
Z Þ� ¼ ð ~L�

�Þ� ¼ ð ~LBÞ� ¼ 0: (26)

The variation of L with respect to e puts the momenta ��

on mass shell with vanishing mass

�2 ¼ 0: (27)

Finally, the variation of L with respect to (x�, 	�) gives,
using (24) and (25), the superparticle equations of motion
in superspace,

d

d�

�
��

e

�
¼ ��F�� þ _	
F�
; (28)

2ið _�	��Þ�
�
��

e

�
¼ ��F��; (29)

where the superfield strength using the differential operator
D� ¼ @� þ ið �	��Þ�@� are

F�� ¼ ð@�A� � @�A�Þ ¼ f��;

F�� ¼ ð@� ~A� �D�A�Þ ¼ ið���Þ�;
(30)

and the superspace constraints following from (24)

F�
 ¼ ðD�
~A
 þD


~A�Þ � 2iðC��Þ�
A� ¼ 0 (31)

have been used in (29). The sector of our model covered by

(x�, p�, 	
�, 
�, f��, ~��,D) describes therefore a massless

superparticle minimally coupled to the super Uð1Þ gauge
field. Identifying the interaction termLI ¼ A in (21) with
the EM one-form superpotential, the two-superform field
strength F ¼ dA is, after using the MC Eqs. (20),

F ¼ dA ¼ 1
2f��L

�L� þ i��ð��LÞ�L� þ � � � ; (32)

where the � � � terms are linear in the one forms LB, L
�
�, L

��
Z

which vanish on shell. The field strength components are
the ones given in (30) and (31).
Our model describes the coupling to a particular choice

of Uð1Þ gauge superfield strength W�ðx; 	Þ in (3), which
satisfies the standard superspace constraints for the SUSY
gauge theories [13],

F�
 ¼ 0; F�� ¼ W
ð��Þ
�;

D�W
 ¼ � i

2
ðC���Þ�
F��; @�W
ð��Þ
� ¼ 0:

(33)

It is known (see, e.g., [14]) that the coupling of the N ¼ 1
superparticle to the gauge superfield strength W�ðx; 	Þ
satisfying the constraints (33) leads to a �-invariant inter-
action. Actually our system is not only invariant under the
global Maxwell supersymmetries but also invariant under �
reparametrization and the � symmetries.
Conclusions.—In this Letter we found supersymmetric

extensions of the Maxwell algebra and proposed a � in-
variant superparticle model (21) with the superMaxwell
symmetries. It couples minimally to a constant Uð1Þ gauge
superfield strength satisfying the superspace constraints
[see (33)]. It gives a new geometric framework for a super-
space filled with a uniform SUSY gauge field by general-
izing the known nonsupersymmetric one with Maxwell
symmetries. Because supersymmetries have critical impor-
tance in current fundamental interaction theories (e.g.,
string or M theory), we hope such a generalization will
be useful in this context, in particular, in the interpretation
of fermionic backgrounds.
The superMaxwell algebra is realized if we regard the

variables (f��, ~��, D) as dynamical ones. In the
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Hamiltonian formulation of our model (21) they become
the generators (Z��, ��, B) of the superMaxwell symme-

tries. Note that by taking a fixed solution for (f��, ~��, D)

the superMaxwell symmetry is spontaneously broken to
smaller ones similarly as in the bosonic case [2]. The
evolution of the coordinates (���, ��, �) are described
by Eq. (26) with their solutions determined by the trajec-

tories in the ‘‘physical’’ subspace (x�, 	�, f��, ~��, D). It

will be interesting to find some physical interpretation for
the new coordinates (���, ��, �) and their dynamical
roles. For the bosonic Maxwell case it has been suggested
[7] that ��� describes the magnetic moment of a distribu-
tion of charged particles with center-of-mass position x�.

The superMaxwell algebra G introduced in this Letter is
a minimal superextension of the Maxwell algebra. It can be
considered as an enlargement of the Green algebra [15] by
adding the tensorial central charges Z��. In the Green

algebra the spinorial generators �� are central [compare

with (11)]. We have considered also its central extension ~G
and the enlargement G5 by means of the chiral generator
B5. The superMaxwell algebra G can be embedded into
larger superalgebras, in particular, in the known
Bergshoeff-Sezgin (BS) p-brane algebra [16]. Thus one
can introduce a corresponding BS-invariant superparticle
model with the interaction Lagrangian generalizing (22)
and gauge superpotentials ABS

� , ABS
� depending in a unique

way on the BS supergroup coordinates. Using the coset
with Lorentz stability group we find that the corresponding
superfield strength FBS’s do not satisfy the superspace
constraints (33); i.e., the BS superparticle dynamics is
not � symmetric. The origin of the noninvariance is the
appearance of Z�� in the fQ;Qg anticommutator result-

ing in F�
 � 0 which violates the SUSY constraint (33)

[cf. (32)]. We note also that Soroka and Soroka proposed in
[5,17] a nonstandard supersymmetrization of Maxwell
algebra, without the translation generators in the basic
anticommutator fQ;Qg; moreover in [17] there is presented
some superextension of k-deformed Maxwell algebra (k >
0 of [8]).

Our geometric scheme introduces additional degrees of
freedom, describing uniform gauge field strengths in space
and superspace leading to uniform constant energy density.
These global degrees of freedom are dynamical; i.e., our
model provides a framework in which the cosmological
constant could be considered as a dynamical quantity.
Recently, many papers propose new types of dynamics to
explain the dark energy phenomenon (see, e.g., [18]) as

well as the dynamical role of the cosmological constant
(see, e.g., [19,20]). Because at present these issues are of
fundamental importance, the developments in this Letter
should find some important applications.
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