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(Received 30 April 2009; published 22 February 2010)

The origin of the cooperative Jahn-Teller distortion and orbital order in LaMnO3 is central to the

physics of the manganites. The question is complicated by the simultaneous presence of tetragonal and

GdFeO3-type distortions and the strong Hund’s rule coupling between eg and t2g electrons. To clarify the

situation we calculate the transition temperature for the Kugel-Khomskii superexchange mechanism by

using the local density approximationþ dynamical mean-field method, and disentangle the effects of

superexchange from those of lattice distortions. We find that superexchange alone would yield TKK �
650 K. The tetragonal and GdFeO3-type distortions, however, reduce TKK to �550 K. Thus electron-

phonon coupling is essential to explain the persistence of local Jahn-Teller distortions to *1150 K and to

reproduce the occupied orbital deduced from neutron scattering.
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The insulating perovskite LaMnO3 is the parent com-
pound of the colossal magnetoresistance manganites [1]
and it is considered a textbook example of a cooperative
Jahn-Teller (JT) orbitally ordered material [2]. Two distinct
mechanism have been proposed to explain the cooperative
distortion: many-body Kugel-Khomskii (KK) super-
exchange (SE) [3] and one-electron electron-phonon (EP)
coupling [4]. Determining the relative strength of these
mechanisms will provide a measure of the importance of
strong correlation effects for the orbital physics in the
manganites. Unfortunately, the situation is complicated
by the simultaneous presence of tetragonal and
GdFeO3-type distortions as well as a strong Hund’s rule
coupling between the Mn eg and t2g electrons.

In LaMnO3 the Mn3þ ions are in a t32ge
1
g configuration.

Because of strong Hund’s rule coupling the spin of the eg
electron is parallel to the spin of the t2g electrons on the

same site. Above TN ¼ 140 K the spins on neighboring
sites are disordered [5]. The crystal structure is orthorhom-
bic (Fig. 1). It can be understood by starting from an ideal
cubic perovskite structure with axes x, y, and z: first, a
tetragonal distortion reduces the Mn-O bond along z by
2%. The La-O and La-Mn covalencies induce a
GdFeO3-type distortion [6,7] resulting in an orthorhombic
lattice with axes a, b, and c, with the oxygen-octahedra
tilted about b and rotated around c in alternating direc-
tions. Finally, the octahedra distort, with long (l) and short
(s) bonds alternating along x and y, and repeating along z
[8–11]. This is measured by �JT ¼ ðl� sÞ=ððlþ sÞ=2Þ.
The degeneracy of the eg orbitals is lifted and the occupied

orbital, j�i¼ cos�2 j3z2�1iþsin�2 jx2�y2i, is �j3l2�1i,
i.e., it points in the direction of the long axis. Thus orbital
order (OO) is d-type with the sign of � alternating along x
and y and repeating along z. At 300 K the JT distortion is
substantial, �JT ¼ 11%, and �� 108� was estimated from
neutron scattering data [8]. Above TOO � 750 K a strong
reduction to �JT ¼ 2:4%was reported [8,12], accompanied

by a change in � to �90� [8]. Recently this was, however,
identified as an order-to-disorder transition [10,11]: be-
cause of orientational disorder, the crystal appears cubic
on average, while, within nanoclusters, the MnO6 octahe-
dra remain fully JT distorted up to TJT * 1150 K [11].
Model calculations based on superexchange alone can

account for d-type order, but yield, for the classical ground
state, �� 90� [13]. Models of electron-phonon coupling in
simple cubic perovskites instead give �120� [4]. To ex-
plain the observed �108�, one might thus conclude that
both mechanisms are of similar importance [3]. Such
models are lacking, however, a realistic description of the
crystal and the calculated � is sensitive to the choice of
parameters [4,14]. LDAþU calculations yield � ¼ 109�

FIG. 1 (color online). Structure of LaMnO3 at 300 K [8]. The
conventional cell is orthorhombic with axes a, b, and c, and
contains 4 formula units. The pseudocubic axes (left corner) are
defined via a ¼ ðx� yÞð1þ �Þ, b ¼ ðxþ yÞð1þ �Þ, and c ¼
2zð1þ �Þ, with �, �, � small numbers. For sites 1 and 3 the
long (short) bond l (s) is� along y (x), vice versa for sites 2 and
4 (d-type pattern). All Mn sites are equivalent. The symmetries
that transform them into a site of type 1 are x $ y (site 2) z !
�z (site 3), x $ y, z ! �z (site 4).
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and show that Coulomb repulsion is fundamental to stabi-
lize the Jahn-Teller distortions in the ground state [15].
This might be taken as evidence that Kugel-Khomskii
superexchange is the dominant mechanism, and electron-
phonon coupling, enhanced by electron localization
[15,16], merely helps. On the other hand, recent semiclas-
sical many-body calculations for model cubic perovskites
indicate that electron-phonon coupling is essential to ex-
plain orbital ordering above 300 K [17].

While it is not obvious how well LDAþU or semiclas-
sical approaches capture the many-body nature of the KK
superexchange, it seems clear that the inclusion of the real
crystal structure is crucial [3,6,18,19]. The tetragonal and
GdFeO3-type distortions result in a sizable narrowing of
the eg bands [6,7,20], likely changing the relative strength

of superexchange and electron-phonon coupling. Since, in
the presence of a crystal field, Coulomb repulsion sup-
presses orbital fluctuations [6,21], they may even compete
with SE and EP coupling. To identify the driving mecha-
nism for orbital order in LaMnO3, it is thus mandatory to
account for both the realistic electronic structure and
many-body effects. To understand the mechanism one
has to disentangle the contribution of KK superexchange
from that of the JT or the GdFeO3-type and tetragonal
distortions.

In this Letter, we do this by calculating directly the
Kugel-Khomskii superexchange transition temperature
TKK with and without tetragonal and GdFeO3-type distor-
tions. We adopt the method used successfully for KCuF3
[21], based on local-density approximation ðLDAÞ þ
dynamical mean-field theory (DMFT) [22].

First, we calculate the electronic structure ab initio using
the Nth order muffin-tin orbital method. Since the Hund’s
rule energy gain is larger that the eg-t2g crystal-field split-

ting, the t2g bands are
1
2 filled and the eg bands

1
4 filled; the

three t2g electrons behave as a spin St2g and couple to the eg
electron via an effective magnetic field h ¼ JSt2g . In the

paramagnetic phase (T > TN ¼ 140 K) the t2g spins are

spatially disordered. The minimal model to study the KK
mechanism in LaMnO3 is thus [23]

H ¼ X

im�;jm0�0
ti;i

0
m;m0u

i;i0
�;�0c

y
im�ci0m0�0

� h
X

im

ðnim* � nim+Þ þU
X

im

nim*nim+

þ 1

2

X

imð�m0Þ��0
ðU� 2J � J��;�0 Þnim�nim0�0 : (1)

cyim� creates an electron with spin � ¼* , + in a Wannier

orbital jmi ¼ jx2 � y2i or j3z2 � 1i at site i, and nim� ¼
cyim�cim�. * ( + ) indicates the eg spin parallel (antiparallel)

to the t2g spins (on that site). The matrix u (ui;i
0

�;�0 ¼ 2=3 for

i � i0, ui;i
�;�0 ¼ ��;�0) accounts for the orientational disor-

der of the t2g spins [23]; t
i;i0
m;m0 is the LDA hopping integral

from orbital m on site i to orbital m0 on site i0, obtained
ab initio by downfolding the LDA bands and constructing a
localized eg Wannier basis. The on-site terms i ¼ i0 give
the crystal-field splitting. U and J are the direct and
exchange screened on-site Coulomb interaction [24]. We
use the theoretical estimate J ¼ 0:75 eV [25] and vary U
between 4 and 7 eV. The Hund’s rule splitting was esti-
mated ab initio to 2JSt2g � 2:7 eV [7]. We solve (1) using

DMFT [26] or cellular DMFT (CDMFT) and a quantum
Monte Carlo [27] solver, working with the full self-energy
matrix�mm0 in orbital space [6]. The spectral matrix on the
real axis is obtained by analytic continuation [28].
We consider several structures: (i) the room temperature

structure R11 with �JT ¼ 11%, and a series of hypothetical
structures R�JT

with reduced JT distortion �JT, (ii) the

(average) structure found at 800 K, R800 K
2:4 , which has a

slightly larger volume than R11 and a smaller GdFeO3-type
distortion, and (iii) the ideal cubic structure I0 with the
same volume as R11. For all structures we find that at each
site the eg spins align to St2g . We calculate the orbital

polarization p as a function of temperature [29] by diago-
nalizing the DMFT (or CDMFT) occupation matrix and
taking the difference between the occupation of the most
(j�i) and least (j�þ �i) filled orbital. To test the t2g spins

picture we perform calculations for the 5-band (eg þ t2g)

Hubbard model [30]. We find that it holds even at high
temperatures.
For the 300 K structure (R11) the bandwidths areWt2g �

1:6 eV and Weg � 3:0 eV. The eg states split by

�840 meV, in good agreement with experimental esti-
mates [31]. The lower crystal-field state at site 1 is j1i ¼
0:574j3z2 � 1i þ 0:818jx2 � y2i. We find an insulating
solution in the full range U ¼ 4–7 eV (Fig. 2). The Mott
gap Eg is �0:6 eV for U ¼ 4 eV, and increases almost

linearly with increasing U. For U ¼ 5 eV, suggested by
recent estimates [7,32], the Hubbard bands are at �� 1:5
and 2 eV. In addition there is a broad feature around 5 eV
due to eg states with spin antiparallel to the randomly

oriented t2g spins. These spectra are in line with experi-

ments [31–34]. We find that even at 1150 K the system is
fully orbitally polarized (p� 1). On sites 1 and 3, the

FIG. 2 (color online). Right: LDAþ DMFT spectral function
for the room temperature structure R11 for different U. * ( + )
indicates states with eg spins parallel (antiparallel) to St2g . Left:

k-resolved spectral function for U ¼ 5 eV.
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occupied state is j�i � j106�i, on sites 2 and 4 it is
j��i � j�106�i (d-type OO); j�i is close to the lower
crystal-field state obtained from LDA (Table I) and in
excellent agreement with neutron diffraction experiments
[8]. We find that things hardly change when the JT dis-
tortion is halved (R6 structure in Fig. 3). Even for the
average 800 K structure (R800 K

2:4 ) OO does not disappear:

Although the Jahn-Teller distortion is strongly reduced to
�JT ¼ 2:4%, the crystal-field splitting is �168 meV and
the orbital polarization at 1150 K is as large as p� 0:65,
while � is now close to 90�. For all these structures, orbital
order is already determined by the distortions via the
crystal-field splitting.

To find the temperature TKK at which Kugel-Khomskii
superexchange drives orbital order we consider the zero
crystal-field limit, i.e., the ideal cubic structure I0. The eg
bandwidth increases toWeg �3:7 eV and forU ¼ 5 eV the

system is a Mott insulator with a tiny gap only below T �
650 K. We find TKK � 650 K, very close to the metal-
insulator transition (Fig. 3). To check how strongly TKK

changes when the gap opens, we increase U. For U ¼
5:5 eV we find an insulating solution with a small gap of
�0:5 eV and TKK still close to �650 K. For U ¼ 6 eV,
Eg � 0:9 eV and TKK � 550 K. Even with an unrealisti-

cally large U ¼ 7 eV, giving Eg � 1:8 eV, TKK is still as

large as �470 K. Thus, despite the small gap, TKK de-
creases as �1=U, as expected for superexchange. For a
realistic U� 5 eV, the calculated TKK � 650 K is surpris-
ingly close to the order-disorder transition temperature,
TOO � 750 K, though still much smaller than TJT *
1150 K. The occupied state at site 1 is j�i�j90�i for allU.

Such a large TKK is all the more surprising when com-
pared with the value obtained for KCuF3, TKK � 350 K
[21]. For the ideal cubic structure the hopping matrix

(Table I) is ti;i�z
m;m0 � �t�m;m0�m;3z2�1, ti;i�x

m;m ¼ ti;i�y
m;m �

�t=4ð1þ 2�m;x2�y2Þ, and for m � m0 ti;i�x
m;m0 ¼ �ti;i�y

m;m0 �ffiffiffi
3

p
t=4. Since the effective (after averaging over the direc-

tions of St2g) hopping integral in LaMnO3, 2t=3�
345 meV is �10% smaller than t� 376 meV in KCuF3
[21], one may expect a slightly smaller TKK in LaMnO3,
opposite to what we find. Our result can, however, be
understood in superexchange theory. The KK SE part of
the Hamiltonian, obtained by second-order perturbation
theory in t from Eq. (1), may be written as

Hi;i0
SE � JSE

2

X

hii0ix;y
½3Tx

i T
x
i0 �

ffiffiffi
3

p ðTz
i T

x
i0 þ Tx

i T
z
i0 Þ�

þ JSE
2

X

hii0ix;y
Tz
i T

z
i0 þ 2JSE

X

hii0iz
Tz
i T

z
i0 ; (2)

where hi; i0ix;y and hi; i0iz indicate near neighboring sites

along x, y, or z; �ðþÞ refers to the x (y) direction, Tx
i and

Tz
i are pseudospin operators [3], with Tzj3z2 � 1i ¼

1=2j3z2 � 1i, Tzjx2 � y2i ¼ �1=2jx2 � y2i. The superex-
change coupling is JSE ¼ ð�t2=UÞðw=2Þ, where �t is the
effective hopping integral. In the large U limit (neg-

ligible J=U and h=U), w� 1þ 4hSzi ihSzi0 i þ ð1� 4hSzi i�
hSz

i0 iÞui;i
0

*;+=u
i;i0
*;*, where Szi are the eg spin operators. In

LaMnO3 the eg spins align with the randomly oriented

t2g spins, thus �t ¼ 2t=3,w� 2, and JSE � 2ð2t=3Þ2=U. For

d-type order, the classical ground state is j�i � j90�i, in
agreement with our DMFT results. In KCuF3, with con-
figuration t62ge

3
g, the Hund’s rule coupling between eg and

t2g plays no role, i.e., hSzi i ¼ 0. The hopping integral �t ¼ t

is indeed slightly larger than in LaMnO3, but w� 1, a
reduction of 50%. Consequently, JSE is reduced by�0:6 in
KCuF3. For finite J=U and h=U, w is a more complicated
function, but the conclusions stay the same. We verified
solving (1) with LDAþ DMFT that also for LaMnO3 TKK

drops drastically if ui;i
0

�;�� ¼ 0 and h ¼ 0.

TABLE I. Hopping integrals ti;i
0

m;m0=meV from a site i of type 1
to a neighboring site i0 of type 2 in direction lxþ ny þmz for
structures R11, R

800 K
2:4 , R0, and I0. The states m, m0 are j�i ¼

jx2 � y2i and j0i ¼ j3z2 � 1i. The crystal-field states are the
eigenvectors of the on-site matrix (l ¼ m ¼ n ¼ 0).

lmn ti;i
0

�;� ti;i
0

�;0 ti;i
0

0;� ti;i
0

0;0 ti;i
0

�;� ti;i
0

�;0 ti;i
0

0;� ti;i
0

0;0

R11 R800 K
2:4

000 0 409 409 305 0 84 84 �2
001 �8 �47 �47 �445 �2 �13 �13 �439
010 �322 233 174 �129 �328 196 190 �105
100 �322 �174 �236 �129 �328 �190 �196 �105

R0 I0
000 0 5 5 218 0 0 0 0

001 �1 �2 �2 �433 �10 0 0 �518
010 �333 206 207 �121 �391 220 220 �137
100 �333 �207 �206 �121 �391 �220 �220 �137

FIG. 3 (color online). Orbital polarization p (left) and (right)
occupied state j�i (j � �i) for sites 1 and 3 (2 and 4) as a
function of temperature. Solid line: 300 K (R11) and 800 K
(R800 K

2:4 ) structures. Dots: orthorhombic structures with half (R6)

or no (R0) Jahn-Teller distortion. Pentagons: 2 (full) and 4
(empty) sites CDMFT. Dashes: ideal cubic structure (I0).
Circles: U ¼ 5 eV. Diamonds: U ¼ 5:5 eV. Triangles: U ¼
6 eV. Squares: U ¼ 7 eV. Crystal-field splitting (meV): 840
(R11), 495 (R6), 219 (R0), 168 (R800 K

2:4 ), and 0 (I0).
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It remains to evaluate the effect of the orthorhombic
distortion on the transition. For this we perform calcula-
tions for the system R0 with no Jahn-Teller distortion, but
keeping the tetragonal and GdFeO3-type distortion of the
300 K structure. This structure is metallic for U ¼ 4 eV;
for U ¼ 5 eV it has a gap of �0:5 eV. We find a large
polarization already at 1150 K (p� 0:45). Such polariza-
tion is due to the crystal-field splitting of about 219 meV,
with lower crystal-field states at site 1 given by j1i �
jx2 � y2i. Surprisingly, the most occupied state j�i is close
to j1i (�� 180) only at high temperature (�1000 K). The
orthorhombic crystal field thus competes with superex-
change, analogous to an external field with a component
perpendicular to an easy axis. On cooling the occupied
orbitals rotate to j�i � j132�i (see Fig. 3). This effect of
superexchange occurs around a characteristic temperature
TR
KK � 550 K, still surprisingly large, but reduced com-

pared to TKK for the ideal cubic system I0 and much
smaller than the experimental TJT * 1150 K. Short-range
correlations could reduce TR

KK or modify �. To estimate this
effect we perform CDMFT calculations; our results (Fig. 3)
remain basically unchanged. Thus, electron-phonon cou-
pling is necessary to explain both the transition tempera-
ture and the correct occupied orbital j�i � j108�i.

In conclusion, we find that TR
KK in orthorhombic

LaMnO3 is �550 K. We have shown that two elements
are crucial: the superexchange mechanism, which yields a
transition temperature as high as 650 K, and the tetragonal
plus GdFeO3-type distortion, which, due to the reduced
hopping integrals and the competing orthorhombic crystal
field, reduces TKK to 550 K. Experimentally, an order-to-
disorder transition occurs around TOO � 750 K, but a local
Jahn-Teller distortion persists in the disordered phase up to
TJT * 1150 K. The Kugel-Khomskii mechanism alone
cannot account for the presence of such Jahn-Teller dis-
tortions above 550 K (TR

KK � TJT). It also cannot justify
the neutron scattering estimate � ¼ 108�. Thus electron-
phonon coupling is a crucial ingredient, both for making
the Jahn-Teller distortions energetically favorable at such
high temperatures and in determining the occupied orbital.
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A. I. Lichtenstein, and Grant No. JIFF22 on Jugene.

[1] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
[2] P. Fazekas, Lecture Notes on Electron Correlation and

Magnetism (World Scientific, Singapore, 1999).
[3] K. I. Kugel and D. I. Khomskii, Zh. Eksp. Teor. Fiz. 64,

1429 (1973) [Sov. Phys. JETP 37, 725 (1973)].
[4] J. Kanamori, J. Appl. Phys. 31, S14 (1960).
[5] E. O. Wollan and W.C. Koehler, Phys. Rev. 100, 545

(1955).
[6] E. Pavarini et al., Phys. Rev. Lett. 92, 176403 (2004); M.

De Raychaudhury, E. Pavarini, and O.K. Andersen, ibid.

99, 126402 (2007); E. Pavarini, A. Yamasaki, J. Nuss, and
O.K. Andersen, New J. Phys. 7, 188 (2005).

[7] A. Yamasaki et al., Phys. Rev. Lett. 96, 166401 (2006).
[8] J. Rodrı́guez-Carvajal et al., Phys. Rev. B 57, R3189

(1998).
[9] T. Chatterji et al., Phys. Rev. B 68, 052406 (2003).
[10] M. C. Sánchez, G. Subı́as, J. Garcı́a, and J. Blasco, Phys.

Rev. Lett. 90, 045503 (2003).
[11] X. Qiu, Th. Proffen, J. F. Mitchell, and S. J. L. Billinge,

Phys. Rev. Lett. 94, 177203 (2005); A. Sartbaeva et al.,
ibid. 99, 155503 (2007).

[12] Y. Murakami et al., Phys. Rev. Lett. 81, 582 (1998).
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