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The square lattice with nearest neighbor central-force springs is isostatic and does not support shear.

Using the coherent potential approximation (CPA), we study how the random addition, with probability

P ¼ ðz� 4Þ=4 (z ¼ average number of contacts), of next-nearest-neighbor (NNN) springs restores

rigidity and affects phonon structure. The CPA effective NNN spring constant ~�mð!Þ, equivalent to the

complex shear modulus Gð!Þ, obeys the scaling relation, ~�mð!Þ ¼ �mhð!=!�Þ, at small P , where �m ¼
~�0
mð0Þ � P 2 and !� � P , implying nonaffine elastic response at small P and the breakdown of plane-

wave states beyond the Ioffe-Regel limit at ! � !�. We identify a divergent length l� � P�1, and we

relate these results to jamming.
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Isostatic lattices [1–3] are systems at the onset of me-
chanical stability in which the average number of contacts
z per particle in d dimensions is equal to zc ¼ 2d. A lattice
with N particles and Nc two-particle contacts has N0 ¼
dN � Nc zero modes. An infinite isostatic lattice is one in
which Nc ¼ Nzc=2, and the fraction of zero modes van-
ishes. Because particles at the boundary have fewer con-
tacts than those in the bulk, the number of zero modes in a

finite isostatic lattice is subextensive (N0 � Nðd�1Þ=d) and
proportional to the area of the system boundary. As a result,
the phonon spectrum of isostatic lattices is one-
dimensional in nature. These properties underlie the elastic
and vibrational properties of a variety of systems including
network glasses [4,5], rigidity percolation [6,7],
�-cristobalite [8], granular media [9,10], and networks of
semiflexible polymers [11]. Isostatic lattices include
d-dimensional hypercubic lattices and the 2d kagome,
the 3d pyrochlore lattice, and their d-dimensional general-
izations [12], all with central-force springs with spring
constant k connecting nearest neighbor (NN) sites. They
also include randomly packed spheres at the jamming
transition [13–15].

As in critical phenomena at ‘‘standard’’ phase transi-
tions, the approach to the critical isostatic state, which this
Letter explores, is characterized by diverging length and
time scales and by scaling behavior. Lattices can be moved
off isostaticity in various ways, including (i) introducing
springs with a tunable spring constant � connecting next-
nearest-neighbor (NNN) sites [16] and (ii) increasing the
volume fraction � of packed spheres above the critical
value �c at jamming [13–15,17–19]. The isostatic lattices
with their soft modes are then approached continuously as
� or �� ¼ ð���cÞ approach zero, and divergent length
scales l�, vanishing frequencies!�, and possibly vanishing
shear moduli G (isotropic for jamming and the anisotropic
modulus C44 � Cxyxy for the square lattice as detailed

below) can be identified. In approach (ii), the number of

contacts increases as �z ¼ z� zc � ð��Þ1=2, l� �
ð�zÞ�1, !� � �z, and G��z, whereas in approach (i)

for the square lattice l� � ��1=2, !� � �1=2, and G� �.
In this Letter, we investigate a third approach to isosta-

ticity in the square lattice: we populate NNN bonds with
springs of spring constant �with probabilityP as shown in
Fig. 1. At nonzero P , the addition of an extensive number
of NNN bonds removes all zero modes with a probability
that approaches unity [20] as the number of sites N ! 1,
and as a result, the infinite lattice has a nonzero shear
modulus for all P > 0. Thus, our model describes a rigid-
ity percolation problem in which the percolation threshold
is at P ¼ 0. It is the particular case [21,22] of the more
general rigidity percolation problem on a square lattice
[23] with NN and NNN bonds populated independently
with respective probabilities PNN and P in which PNN ¼
1. This model shares underlying periodicity with approach
(i) but it includes randomness analogous to approach (ii).
Adding a NNN spring increases the number of contacts by

FIG. 1 (color online). (a) Square lattice with NN bonds with
springs of spring constant k and NNN bonds with randomly
placed springs with spring constant �. The distortion depicted
with dotted lines represents one of the zero modes of the lattice
with no NNN springs. (b) Effective-medium lattice with springs
of spring constant �m on all NNN bonds. In the CPA, the spring
constant �s of a single NNN bond is changed to � or to 0 with
respective probabilities P and 1� P .
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1 so that P ¼ ðz� zcÞ=4, where zc ¼ 4 in the NN square
lattice. Unless otherwise stated in what follows, we use
reduced units with k ¼ 1 and lattice constant a ¼ 1 and
unitless spring constants, elastic moduli, and frequencies:

�=k ! �, Ga2=k ! G, and !=
ffiffiffi
k

p ! !.
We study this random NNN model using the coherent

potential approximation (CPA) [23–25], which gives good
results for the conductivity of random networks near per-
colation [26] and for rigidity percolation problems [23]
except right in the vicinity of P ¼ P c, and we verify that it
gives results that are in quantitative agreement with nu-
merical simulations in our system. In the CPA, an effective
medium of a uniform lattice with every NNN bond occu-
pied by a spring with complex effective spring constant
~�mð!Þ ¼ ~�0

mð!Þ � i~�00
mð!Þ, determined by a proper self-

consistency condition, is used to capture the disorder av-
erage of the random lattice. From ~�mð!Þ, which is also
equal to the complex shear modulus Gð!Þ, we can calcu-
late (following the procedures of approach (i) [16]) the
characteristic length l� and frequency !� and the zero-
frequency shear modulus G ¼ ~�0ð! ¼ 0Þ, as summarized
in Table I. As in the case of jamming, l� � 1=!� � ð�zÞ�1,
in agreement with the general cutting arguments of
Refs. [3,18]. The length l�, being the average distance
between NNN bonds in any row or column in the random
lattice, marks the crossover from 1d to 2d behavior in the
effective medium, because NNN bonds couple neighboring
1d rows or columns. The shear modulus, however, scales as
G� P 2 � ð�zÞ2, rather than as G� ð�zÞ at jamming,
implying highly nonaffine response near P ¼ 0. If the
response were affine, every equivalent NNN bond would
distort the same way in response to shear, and G would be
equal to P�. Response becomes more nearly affine with
G � P� when �2P � �. Figure 2 shows �m ¼ G as a
function of P for different � calculated from the CPA and
via numerical simulations using the conjugate gradient
method [27] to calculate the relaxed response of the system
to an applied shear.

The frequency dependence of ~�mð!Þ is plotted in Fig. 3.
In the nonaffine regime, it obeys a scaling law, ~�ð!Þ ¼
�mhð!=!�Þ, where hðwÞ approaches unity as w ! 0.
~�00ð!Þ vanishes as!2 at small! but becomes nearly linear
in ! for ! * 0:5!�. This behavior corresponds to a shear
viscosity that vanishes as ! at small ! but becomes a
constant at large !. A transverse phonon of frequency !
propagating along the y direction (i.e., with qx ¼ 0) has a

wave number qð!Þ ¼ !=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�0
mð!Þp

and a mean-free path

lð!Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0
mð!Þp

�ð!Þ, where �ð!Þ ¼ 2½~�00
mð!Þq2ð!Þ=!��1

is the decay time, implying that the Ioffe-Regel limit [28]
qð!Þlð!Þ ¼ 1 occurs at 2~�0

mð!Þ ¼ ~�00
mð!Þ, i.e., at! � !�.

Thus !� sets the frequency scale for the nearly isostatic

modes and the scale at which plane-wave states become ill
defined in agreement with recent studies of thermal con-
ductivity near jamming [19]. Because qyð!�Þ � �=a,

plane-wave states with qx ¼ 0 are well defined up to the
zone edge.
Because the zero modes on isostatic square lattice are

uniform displacements of rows or columns, its phonon
spectrum is identical to that of decoupled one-dimensional
chains with frequencies !x;yðqÞ ¼ 2j sinqx;y=2j and den-

sity of states �ð!Þ ¼ ð2=�Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�!2

p
with a nonzero

value 1=� at ! ¼ 0 as shown in Fig. 4. When the
effective-medium NNN coupling ~�mð!Þ is added, the dy-
namical matrix becomes

DxxðqÞ ¼ Dyyðqy; qxÞ
¼ 4sin2ðqx=2Þ þ 4~�mð!Þsin2ðqy=2Þ

þ 4~�mð!Þsin2ðqx=2Þ
� 8~�mð!Þsin2ðqx=2Þsin2ðqy=2Þ;

DxyðqÞ ¼ DyxðqÞ ¼ 2~�mð!Þ sinðqxÞ sinðqyÞ:

(1)

TABLE I. Dependence of l�, !�, and G on P and �z.

l� � P�1 � ð�zÞ�1 !� � P � �z G� P 2 � ð�zÞ2

FIG. 2 (color online). Comparison of the CPA solution (lines)
and numerical simulations on a 100� 100 lattice (data points)
for the effective-medium spring constant �m as a function of P
for � ¼ 10�2, 100, and 102 (in reduced units). Also shown are
the nonaffine (�m ¼ ð�P=2Þ2) and affine limits (�m ¼ P�). For
the CPA at large P , we used the full dynamical matrix [Eq. (1)]
rather than the approximate forms of Eq. (2).

FIG. 3 (color online). Real and imaginary parts of hð!=!�Þ �
h0 � ih00 (labeled respectively h0 and h00) and of �mð!Þ=�m for
P ¼ 10�2 and 10�1 (labeled respectively 10, 100, 20, and 200) for
� ¼ 1. Curves for P ¼ 10�3 and 10�4 differ by less than 1%
from the h curve and are not shown. The full dynamical matrix
[Eq. (1)] was used in the P ¼ 10�1 calculation.
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In the q ! 0 limit, the dynamical matrix reduces to that of
continuum elastic theory with Dxx ¼ C11q

2
x þ C44q

2
y,

where C11 is a compression modulus and C44 the shear
modulus. C44ð!Þ is the complex shear storage modulus
Gð!Þ. Comparison of the continuum form with the small q
limit of Eq. (1) yields ~�mð!Þ ¼ Gð!Þ.

When j~�mð!Þj 	 1, the off-diagonal terms inDij can be

ignored, and the low-frequency modes follow from

DxxðqÞ � q2x þ 4~�mð!Þsin2ðqy=2Þ � q2x þ ~�mð!Þq2y (2)

and a similar approximation for DyyðqÞ. Replacing ~�mð!Þ
by its ! ! 0 limit �m yields a characteristic length l� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4�m

p
through the comparison of q2x with Dxxð0; �Þ ¼

4�m and a characteristic frequency at the zone edge of

!� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxxð0; �Þ

p ¼ 2
ffiffiffiffiffiffiffi
�m

p
. For qx > 1=l� (or !>!�),

the excitation spectrum is one dimensional in qx. These
observations along with �m � P 2, which we derive below,
lead to the results of Table I.

To proceed with the CPA, we use the 2� 2 phonon
matrix Green’s function of this effective medium

G ðq; !Þ ¼ ½!2I�DðqÞ��1: (3)

In the CPA approximation [24,26], an arbitrary NNN bond,
say, between particles 1 and 2 as shown in Fig. 1(b), is
replaced by a new one with a random spring constant �s

with values � and 0 with respective probabilities P and
1� P . The dynamical matrix then changes to DV ¼ Dþ

V, where V is the potential given by [23]

V l;l0 ¼ ð�s � ~�mÞð�l;1 � �l;2Þb̂ 
 ð�l0;1 � �l0;2Þb̂; (4)

in real space, b̂ ¼ ðex þ eyÞ=
ffiffiffi
2

p
is the unit vector along the

chosen NNN bond, and l and l0 specify sites on the lattice.
The potential V leads to a modification of the phonon
Green’s function, GV

l;l0 ð!Þ, which can be calculated follow-
ing standard procedures:

G V
l;l0 ð!Þ ¼ Gl�l0 ð!Þ þ X

l1;l2

Gl�l1ð!Þ � Tl1;l2 �Gl2�l0 ð!Þ;

(5)

where Gl�l0 is the Fourier transform with respect to q of
Gðq; !Þ and where T ¼ ½I� V �G��1 � V is the scattering
T matrix. The effective spring constant ~�mð!Þ is deter-
mined within the CPA through the requirement that the
average T vanish: PTj�s¼� þ ð1� P ÞTj�s¼0 ¼ 0, so that

fð~�m;!Þ~�2
mð!Þ � ½1þ �fð~�m;!Þ�~�mð!Þ þ �P ¼ 0:

(6)

The function f can be expressed as fð~�m;!Þ ¼
½2=ð� ffiffiffiffiffiffiffi

~�m

p Þ�~gð~�m;!=
ffiffiffiffiffiffiffi
~�m

p Þ, where

~gðr; sÞ ¼ 1

2

Z �

0
dq

1� e�
ffiffi
r

p
pðq;sÞ cosq

pðq; sÞ ; (7)

with pðq; sÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sin2ðq=2Þ � s2

p
. In the limit r, s ! 0,

~gðr; sÞ ¼ 1, and thus fð~�m; 0Þ ! ½2=ð� ffiffiffiffiffiffiffi
�m

p Þ� as �m ! 0.

When
ffiffiffi
r

p
pð�; sÞ 	 1, the exponential in the numerator of

~gðr; sÞ can be replaced by unity, and ~gð0; sÞ � gðsÞ, gðsÞ !
1þ ðs2=8Þfln½8=ð ffiffiffi

e
p

sÞ� þ ið�=2Þg. We expect �m to tend
to zero with P so that in the small P limit, we can
generally ignore the first term in Eq. (6).
We consider first the static limit, ! ¼ 0, for which the

self-consistency equation for small P becomes

�m þ 2�

�

ffiffiffiffiffiffiffi
�m

p � P� ¼ 0: (8)

The solution of this equation has two limits

�m ’
� ð�P=2Þ2 if �2P 	 �;
P� if �2P � �;

(9)

as shown in Fig. 2, together with solutions of the full CPA
Eq. (6) and numerical simulations. In the first case,
�

ffiffiffiffiffiffiffi
�m

p � �m, and the solution for �m is obtained by ignor-

ing the first term in Eq. (8); in the second case, the opposite
is true, and �m is obtained by ignoring the second term in
this equation. In the second case, every NNN bond distorts
in the same way under stress, and response is affine. In the
first case �m ¼ ð�P=2Þ2 	 P�, and response is nonaffine
with local rearrangements in response to stress that lower
the shear modulus to below its affine limit. Within the CPA,
this result emerges because of the divergent elastic re-
sponse encoded in G (and fð�m; 0Þ) as �m ! 0. As �

FIG. 4 (color online). (a) Density of states �ð!Þ for (1) (green)
a uniform lattice with � ¼ �m on all NNN bonds, (2) (red) in the
scaling nonaffine limit where ~�mð!Þ ¼ �mhð!=!�Þ, and (3)
(blue dotted line) for P ¼ 10�1 (4) (black dashed line)
Isostatic two-mode limit of 2=� � 0:64. (b) Density of states
for a 100� 100 lattice with P ¼ 10�1 obtained via direct
numerical calculation (dots) and via the CPA (line) using the
full rather than the approximate dynamical matrix of Eq. (2).
Binning of the CPA result would wash out the spikes at low
frequency at ! ¼ qx ¼ 2�n=100 (for integer n).
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approaches zero at fixed P , distortions produced by the
extra bond decrease and the nonaffine regime becomes
vanishingly small.

For finite frequency !, the effective-medium spring
constant is complex, ~�ð!Þ ¼ ~�0ð!Þ � i~�00ð!Þ, where the
imaginary part ~�00ð!Þ, which is odd in ! and positive for
!> 0, describes damping of phonons in this random net-
work. As in the static case, the nonaffine limit of the CPA
result for ~�ð!Þ at small P is the solution to ~�mfð~�m;!Þ ¼
P obtained from Eq. (6) by ignoring all but its last two

terms. Following Eq. (7), at small ~�m and !, fð~�m;!Þ ¼
½2=ð� ffiffiffiffiffiffiffi

~�m

p Þ�gð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m=~�m

p
!=!�Þ. Thus in this limit, ~�mð!Þ

satisfies a scaling equation ~�mð!Þ ¼ �mhð!=!�Þ. As! !
0, hðwÞ ! 1� w2fln½4=ð ffiffiffi

e
p

wÞ� þ ið�=2Þg, and ~�00ð!Þ �
!2 at small !. We calculated ~�mð!Þ=�m for P ¼ 10�4,
10�3, 10�2 and 10�1 with the full CPA Eq. (6) and the
nonaffine scaling function hð!=!�Þ for � ¼ 1. The cross-
over from nonaffine to affine behavior in the static limit is
at P ¼ 1=�2 � 10�1, so all cases but P ¼ 10�1 are at or
near the nonaffine limit. �00

mð!Þ becomes greater than
�0
mð!Þ, and thus according the Ioffe-Regel criterion [28],

plane-wave phonon modes become heavily damped and
ill defined at ! � !� for all four values of P .

The phonon density of states (DOS) �ð!Þ, calculated
from ImTrGmðq; !Þ in the usual way, is plotted in Fig. 4(a)
as a function of !=!�. Curves for the three lowest P in
Fig. 4(a) collapse on to a common curve for! � 3!�. The
curve for P ¼ 10�1 departs from the common curve at
! � 0:5!� and is plotted in the figure. The large value of
�00
mð!�Þ in the random system removes the strong van Hove

singularity at !� of the uniform system. Figure 4(b) com-
pares the DOS for a finite lattice calculated from CPA and
by direct numerical diagonalization of the Hessian matrix
using ARPACK [29]. The peaks in Fig. 4(b) at ! ¼ qx ¼
ð2�n=LÞ are due to finite size effects of the lattice with
size L.

We have used the CPA to analyze the static and dynamic
properties of a simple system on the threshold of isosta-
ticity, namely, a square lattice with NN springs and ran-
domly distributed NNN springs. This system provides
clean analytic results about a random system near isosta-
ticity, including nonaffine response near P ¼ 0, and the
scaling form for ~�mð!Þ (which to our knowledge has not
been observed in jamming systems), that can serve as a
comparison point for more complicated systems. Our re-
sults strongly suggest that the divergent length l� �
1=!� � ð�zÞ�1 is a common feature of all nearly isostatic
systems in agreement with the arguments of Ref. [3]. They
also unambiguously demonstrate that elastic moduli are
not universal but depend on the geometry of the isostatic
lattice. Further study is needed to determine exactly what
properties of the isostatic lattice lead, for example, to a
finite bulk modulus and a shear modulus vanishing as �z

(as in jamming) or ð�zÞ2 (current system) or as ð�zÞ0
(kagome lattice [30]) or to one in which both B and G
vanish as �z as in Ref. [31].
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