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We investigate the structure and mobility of dislocations in hcp 4He crystals. In addition to fully

characterizing the five elastic constants of this system, we obtain direct insight into dislocation core

structures on the basal plane, which demonstrates a tendency toward dissociation into partial dislocations.

Moreover, our results suggest that intrinsic lattice resistance is an essential factor in the mobility of these

dislocations. This insight sheds new light on the possible correlation between dislocation mobility and the

observed macroscopic behavior of crystalline 4He.
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Dislocations are line defects that play a central role in
the mechanical deformation behavior of crystalline solids
[1]. Their activity is widely known to be pivotal in classical
solids, controlling phenomena such as fracture and brittle-
ductile transitions in metals and semiconductors. Much
less is known [2], however, about the influence of disloca-
tions on the properties of quantum crystals, which are
solids where the quantum-mechanical zero-point kinetic
energy is significant compared to the typical energy scale
of the interatomic interactions [3].

Recent experimental studies on crystalline solid 4He, the
propotypical quantum solid, indirectly indicate that dislo-
cations are indeed involved in macroscopic phenomena.
The occurrence of apparent superfluidity [4,5] and the
observation of elastic stiffening [6–8], for instance, have
been linked to the mobility of dislocations. However, in
contrast to classical solids, for which an abundant body of
experimental results exists, the lack of specific experimen-
tal data concerning the behavior of dislocations prevents a
direct investigation of this relationship. In view of these
difficulties, one needs to resort to theoretical approaches.
In principle, a realistic picture of dislocations and their
properties is possible using path-integral or variational
Monte Carlo simulations. However, given that dislocation
modeling requires a simultaneous treatment of different
length scales [9], one associated with the core properties
and the other associated with distances large compared to
the atomic scale, the viability of these direct approaches
remains a subject of debate [10–12].

In this Letter, adopting a methodology that incorporates
both of the relevant scales, we obtain fundamental insight
into the properties of dislocations in the archetypal quan-
tum crystal: solid hcp 4He. We compute the intrinsic dis-
location structure and mobility of four different dislocation
types using the multiscale paradigm of the semidiscrete
Peierls-Nabarro (PN) model [13–15]. It constitutes a hy-
brid continuum-atomistic approach that captures the long-
range elastic fields as well as the lattice-discreteness ef-
fects associated with the dislocation core. All parameters in

the model are determined using quantum-mechanical ex-
pectation values for 4He applying the shadow wave func-
tion (SWF) formalism [16,17]. In addition to providing key
information concerning the elastic properties, our results
shed new light onto the possible role of dislocations in the
experimental observation of the elastic stiffening of solid
and its potential connection to the apparent superfluidity in
this quantum crystal.
Within the semidiscrete PN framework, a straight dis-

location lying along the y direction is represented in terms

of a set of misfit vectors ~�i that describe the disregistry of
atomic row i relative to their counterparts on the other side
of the glide plane, as depicted in Fig. 1. Panel (a) shows a
schematic representation of two sets of atomic rows ex-
tending along the y direction, one set on each side of the
glide plane. The rows above the plane are labeled by the

FIG. 1. Degrees of freedom in the PN model. (a) Atomic rows
on one side of slip plane (dashed line) are labeled by index i.
Distance between adjacent rows in defect-free crystal is �x.
(b) Displacements of rows with respect to those on other side of

slip plane are described by vector ~�i.
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index i. Panel (b) shows a top view, depicting a disregistry

vector ~�i for row i. In this manner, the total misfit asso-
ciated with a given dislocation, described by the Burgers

vector ~b, is thought of as distributed among the atomic
rows along the x axis, subject to the boundary conditions
~��1 ¼ 0 and ~�1 ¼ ~b. Here, we consider two-dimensional

misfit vectors ~�i ¼ �e
i x̂þ �s

i ŷ, with edge and screw com-
ponents along the x and y directions, respectively. The
equilibrium structure of the dislocation is then represented

by that particular misfit distribution ~�i that minimizes the
dislocation energy per unit length,

Udisl ¼ Uelastic þUmisfit þUstress þ C; (1)

where

Uelastic ¼
X

i;j

�ijðKe�
e
i �

e
j þ Ks�

s
i�

s
jÞ; (2)

Umisfit ¼
X

i

�ð ~�iÞ�x; (3)

Ustress ¼ 1

2

X

i

½�eð�e
i þ �e

i�1Þ þ �sð�s
i þ �s

i�1Þ��x; (4)

and C is a constant that can be ignored [13]. In the elastic
part of the dislocation energy, Eq. (2), �ij is a discretized

universal kernel [14], Ke ¼ �=4�ð1� �Þ and Ks ¼
�=4� are elastic prefactors with � the shear modulus
and � the Poisson’s ratio. In addition, �e

i � ð�e
i �

�e
i�1Þ=�x and �s

i � ð�s
i � �s

i�1Þ=�x, where �x is the dis-

tance between adjacent rows in the defect-free crystal.
Equation (3) represents the misfit contribution, in which

�ð ~�Þ is known as the generalized stacking-fault (GSF)
energy surface [18]. It describes the excess energy per
unit area of a crystal that is subjected to the following
procedure. It is first cut into two defect-free parts across a
given plane. The two parts are then displaced relative to

each other by a vector ~�, after which they are patched
together again. An example configuration of the GSF on
the basal plane of the hcp structure is the intrinsic stacking

fault (ISF), in which the displacement vector ~� describes
the associated shift in the planar stacking. In the context of
the PN model, the GSF surface reflects the interatomic
interactions in the system and serves to model the details of
the dislocation core on the atomic scale. Finally, the stress
term of Eq. (4) accounts for the work done by any external
stresses, where �e and �s denote the magnitude of the
components of the stress tensor that couple to the edge
and screw displacements, respectively [1]. The quantities
that specify the model for dislocations in a particular
material are the elastic parameters � and �, the GSF

surface �ð ~�Þ associated with the glide plane of interest,
and �x.

Here, we employ the SWF model based on the parame-
ter set of Ref. [17] to determine these quantities for solid
hcp 4He (space group 194). In order to determine its elastic

properties, we employ a computational cell containing 720

particles at a density of 0:0294 �A�3, which corresponds to
lattice parameters a ¼ 3:63668 �A and c ¼ 5:93866 �A,
subject to standard periodic boundary conditions.
Sampling configurations according to the quantum-
mechanical probability density of the SWF model using
the Metropolis algorithm, we then compute expectation
values of the stress tensor [19] associated with the six
independent deformations of the periodic cell, imposing
strain levels of 0.25%. Using the standard relationship
between the stress and strain tensors [20], we extract the
five independent elastic constants of the hcp structure. The
results, which, to the best of our knowledge represent the
first complete estimate of the elastic constants in hcp 4He,
are reported in Table I. The shear modulus � ¼ C44 ¼
17:1� 0:8 MPa is in good agreement with the value of
14 MPa that follows from the ratio of the experimental
shear stress and strain values reported in [21]. Poisson’s
ratio, obtained from the results in Table I, is found to be
� ¼ 0:151. Both theoretical values are those corresponding
to shear directions in the basal plane, in which hexagonal
crystals are isotropic [22].
Since basal slip is known to be the dominant dislocation

glide mechanism in hcp solid 4He [23], we focus on the
properties of these particular dislocations and compute the
GSF surface associated with the basal plane. For this
purpose, we utilize the 720-atom cell and impose a series

of 400 slip vectors ~� in the basal plane by adjusting the
periodic boundary condition along the c axis. The shadow
degrees of freedom of the atoms immediately adjacent to
the slip plane are allowed to vary only along the c direction
to maintain the relative displacement. Using theMetropolis
algorithm, we then sample configurations according to
the SWF and compute the expectation value of the

Hamiltonian as a function of ~�. Subtracting the expectation

value at ~� ¼ 0 and dividing by the area, we then obtain the
GSF surface. In order to implement the results into the PN
model, we fit the results using a Fourier series that reflects
the lattice symmetry of the basal plane of the hcp structure:

�ð ~�Þ ¼ P
~G
c ~G

expði ~G � ~�Þ, in which we use a set of 81

two-dimensional reciprocal lattice vectors ~G. The results
are shown in Fig. 2. The perfect crystal configuration,
which has GSF value of zero, is associated with the dis-

placement ~� ¼ 0 and its periodic equivalents. The ISF
configuration, which corresponds to the displacement

vector (and equivalents) ~�¼ð0;bpÞ, with bp¼ 1
3

ffiffiffi
3

p
a ¼

2:0996 �A the length of a partial Burgers vector, has an
excess energy of 0:0063 mJ=m2.

TABLE I. Elastic constants of the SWF model for hcp 4He
within the SWF model, in units of MPa.

C11 C33 C44 C12 C13

60:8� 0:8 77:9� 0:8 17:1� 0:8 34:4� 0:8 14:4� 0:8
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Using our estimates for the elastic properties and the
GSF surface in the PN model, we investigate the structure
and intrinsic mobility of 4 dislocation types on the basal
plane: (i) screw, (ii) 30�, (iii) 60�, and (iv) edge. Figure 3
shows the optimized disregistry profile for the screw dis-
location, obtained by minimizing Eq. (1) at zero external
stress. As expected, given the low stacking-fault energy
(SFE) value, it dissociates into two 30� partial dislocations
with opposite edge components, separated by an ISF area
with a width of 29 atomic rows, which corresponds to
91.33 Å. The core width & of the partials, defined as the
distance over which the displacement changes from 1

4 to
3
4

of it total value [14], is approximately 1 atomic row or

�3:1 �A. The second line of Table II contains the dissocia-
tion widths of the other three dislocations, showing an
increasing ISF width with increasing edge component,
consistent with dislocation theory [1].
In addition to the structural properties described here,

the PN model permits an estimate of the intrinsic disloca-
tion mobility, which is measured in terms of the Peierls
stress. To this end, we impose an external shear stress in
the glide plane parallel to the total Burgers vector. It
produces maximal force per unit length [1] on the disloca-
tion line for the given stress magnitude. This magnitude is
then increased in small steps, followed by minimization

of Eq. (1) with respect to the disregistry vectors ~�i. At a
critical stress value, the so-called Peierls stress, an insta-
bility is reached and an equilibrium solution ceases to exist
[14,15]. In this situation, the dislocation becomes free to
move through the crystal. The third line of Table II con-
tains the Peierls stress values for the four considered dis-
location types. The lowest Peierls stress value, obtained for
the 30� dislocation, is of the order of 1:5� 10�2 MPa.
This value is �3 orders of magnitude smaller than the
shear modulus, which is consistent with the typical dis-
crepancy between the ideal shear strength and actual yield
stresses in crystals [1].
The above results were obtained using the SWF model,

which, while providing a good description of the shear
modulus for hcp solid 4He, significantly underestimates a
recent experimental estimate for the SFE, ð0:07�
0:02Þ mJ=m2 [24]. In order to explore the possible influ-
ence of the SFE value on the dislocation mobility, we
repeat the Peierls stress calculations for the case in which
the equilibrium dissociation widths of the four dislocation
types is reduced by a factor 10, which is the ratio between
the experimental and theoretical SFE values. To this end,
we apply an additional shear stress component, whose
direction in the glide plane is perpendicular to the total
Burgers vector of the dislocation. This stress component,
known as Escaig stress [9], does not produce a force on the
dislocation as a whole, but mimics a situation with a differ-
ent SFE value. Using an Escaig stress of 0.4 MPa, we
recompute the Peierls stress values for the four dislocations
types in the basal plane. The results are shown in the fourth
row of Table II. The effect of an increased effective SFE
value does not significantly affect the Peierls stress values
of the model. This is consistent with earlier PN calcula-
tions in metals, in which the Peierls stress was not found to
be sensitive to dissociation width [14].
Finally, we examine our results in the context of recent

experiments considering the macroscopic behavior of solid
4He at low temperatures. In the observation [4,5] of non-
classical rotational inertia (NCRI), interpreted as a signa-
ture of superfluidity, the crucial role of crystal defects and
disorder seems firmly established. Specifically, the behav-
ior of dislocations has attracted a particular interest after

FIG. 2 (color online). Fourier series representation of GSF
surface on the basal plane of hcp 4He as modeled by the SWF.
(a) GSF energy (in mJ=m2) as a function of two-dimensional

displacement ~� (in units of bp ¼ 1
3

ffiffiffi
3

p
a ¼ 2:0996 �A). (b) Con-

tour plot of the GSF. It reflects the basal-plane symmetry of the
hcp structure.
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FIG. 3 (color online). Optimized displacement profile ~�i for
screw dislocation on the basal plane: edge component (open
circles) and screw component (filled squares) are measured in
units of the Burgers vector b ¼ a ¼ 3:63668 �A. Dashed lines
indicate positions of partial dislocations.
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the discovery of an unexpected increase of the shear
modulus that shows the same temperature and 3He impu-
rity concentration dependence as the original NCRI obser-
vations [6–8]. Inspired by the continuum-elasticity based
Granato-Lücke theory [25], it has been hypothesized that
this stiffening is a consequence of a change of mobility of a
network of dislocations. This network is thought to be
pinned by 3He impurities at lowest temperatures, while it
becomes mobile under warmer conditions. Analyzing the
dislocation mobility results of our model, it is interesting to
observe that our lowest Peierls barrier is about 20 times
larger than the shear stresses of�700 Pa reached in recent
experiments [7]. This suggests that intrinsic lattice resis-
tance is an essential factor when it comes to the mobility of
dislocations on the basal plane in hcp solid 4He. Indeed, at
the stress levels reported in these recent experiments, such
dislocations would not be expected to be mobile, not even
in the absence of any pinning centers. Moreover, it is not
expected that the Peierls stress varies significantly as a
function of temperature below 0.1 K, at which the stiffen-
ing is observed, given that finite temperature path-integral
Monte Carlo calculations of several properties do not show
a significant temperature dependence below 1 K [26]. In
this context, a satisfactory explanation for the observed
elastic stiffening in hcp solid 4He must involve intrinsic
mobility issues.

In summary, we employ a hybrid continuum-atomistic
approach, based on the Peierls-Nabarro model and the
shadow wave function formalism, to obtain direct insight
into the intrinsic structural and mobility properties of dis-
locations in hcp solid 4He at zero temperature. In addition
to providing key information concerning the elastic prop-
erties of this prototypical quantum crystal, the results
reveal a significant lattice resistance to dislocation motion.
Analyzing our results in the context of the proposed
dislocation-pinning interpretation of the similarity be-
tween the NCRI and elastic stiffening phenomena suggests
that intrinsic lattice resistance is an essential factor when it
comes to the mobility of dislocations. The proposed inter-
pretation, which entirely ignores this element, may there-
fore not provide a satisfactory explanation for the observed
elastic stiffening in hcp solid 4He.
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