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We examine theoretically the effects of random topographical substrates on the motion of two-

dimensional droplets via statistical approaches, by representing substrate families as stationary random

functions. The droplet shift variance at both early times and in the long-time limit is deduced and the

droplet footprint is found to be a normal random variable at all times. It is shown that substrate roughness

inhibits wetting, illustrating also the tendency of the droplet to slide without spreading as equilibrium is

approached. Our theoretical predictions are verified by numerical experiments.
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Front propagation in heterogeneous media occurs in a
wide variety of areas in physics, ranging from transport
phenomena in porous media and reaction-diffusion-
advection systems to crack propagation due to lattice de-
fects [1]. Heterogeneities are always present in natural
environments, but quite often the process that generates
them is random. In such cases they can be modeled as
random noise signals, a more physical and practical as-
sumption than, e.g., periodic ones. An example of front
propagation central to interfacial hydrodynamics is that of
a moving contact line during liquid spreading on a solid
substrate, where heterogeneities usually originate from
substrate defects, either chemical [2] or topographical [3].

It is a fundamental problem to understand how random
heterogeneities influence the spreading dynamics and the
characteristics of contact line propagation. Experimental
studies on droplet spreading—a simple prototype for the
study of contact line motion—suggest that substrates hav-
ing highly irregular microscale features, commonly called
rough, can influence the dynamics significantly [4].
Wenzel [5] deduced an effective contact angle for a contact
line on a rough substrate. Several theoretical studies on
equilibrium configurations and deterministic substrates
followed [6]. Introducing randomness in the substrate is
clearly a realistic way to represent roughness, but the few
studies in this direction relied on phenomenological mod-
eling ideas and/or postulated equations [7]. Hence, to date
a systematic fluid dynamics treatment based on rational
statistical approaches is still lacking. As a result, contact
line motion on heterogeneous substrates is far from being
well understood, unlike other problems in continuum me-
chanics, such as porous media.

In this Letter we report the first detailed and systematic
study of the qualitative effects of random, small-scale
spatial heterogeneities on droplet motion, through the de-
velopment of appropriate statistical methodologies. The
starting point is the recent work in [8] on the motion of
two-dimensional (2D), partially wetting droplets over de-
terministic substrates. The restriction to 2D simplifies the
problem and is the first step towards understanding the

influence of spatial heterogeneities. The model for the
droplet motion gives the evolution of the droplet thickness
Hðx; tÞ over a substrate �ðxÞ. It was derived from the
hydrodynamic equations in the Stokes regime, by invoking
a long-wave expansion forHx � �H=L� �s � 1, where �H
and L are the maximum height and droplet radius, respec-
tively, and �s is the equilibrium angle prescribed by
Young’s law, and �x � ��=l � 1, where �� and l are the
characteristic amplitude and length scale of the topogra-
phy, respectively. Restricting our attention on the distin-
guished limit �H=L� ��=l yields a single equation which in
dimensionless form reads:

@tH þ @x½H2ðH þ �Þ@3xðH þ �Þ� ¼ 0; (1)

where � � 1 is the nondimensional slip length imposed to
alleviate the stress singularity that occurs at the moving
contact line [9]. Equation (1) describes spreading driven by
capillarity and resisted by viscosity: the term @tH results
from the viscous fluid motion, and the term @x½�� represents
the effect of surface tension and also accounts for the
substrate curvature contributing an additional capillary
pressure, �@2x�. The spatial coordinate x and time t are

made nondimensional by L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð2�sÞ

p
and 3�L=ð��3

sÞ,
respectively, where A is the droplet cross-sectional area, �
is the viscosity, and � is the surface tension. Both �ðxÞ and
HðxÞ are scaled by L�s and � by L�s=3. Equation (1) is
solved subject to (i) a constant area constraint, (ii) the
boundary conditions at the contact points, i.e., the droplet
thickness vanishes and the angle the free surface makes
with the substrate remains equal to its static value �s. For
quasistatic spreading, a singular perturbation method was
employed in [8] to asymptotically match the solution in the
bulk of the fluid with the solution in the vicinity of the
contact lines, leading to a set of two integro-differential
equations (IDEs) for the evolution of the right and left
contact points at x ¼ a�ðtÞ, respectively.
Here we use the set of IDEs to investigate the case where

�ðxÞ is a random function. We take j�ðxÞj � 1 assuming
also that its variations occur at length scales that are much
longer than �. The requirement of substrate smoothness
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together with the fact that the ‘‘noise’’ is spatial and enters
the equations in a nonlinear fashion precludes casting the
problem into the standard Langevin formalism.

The primary fundamental difficulty with the substrate is
utilizing a random representation that can have a large
frequency content and at the same time is differentiable.
A convenient representation is the random function,

�ðxÞ ¼ �0ffiffiffiffi
N

p XN
m¼1

�
�m sin

k0m

N
xþ �m cos

k0m

N
x

�
; (2)

where �0 and k0 are the characteristic amplitude and
wave number, respectively, such that �0k0 � 1, and N is
a large positive integer. Here �m and �m are statistically
independent normal variables of unit variance. It is readily
seen that �ðxÞ is a periodic function with period 2�N=k0,
but we eventually take N ! 1 so that this periodicity is
lost and �ðxÞ approaches a band-limited white noise [see
Fig. 1(a); in this limit, continuity of (2) and all its deriva-
tives can be shown by Kolmogorov’s continuity theorem].

An attractive feature of the stochastic representation in
(2) is that it generates families of substrate realizations
parametrized by two parameters, �0 and k0, which are
often reported in experimental studies when characterizing
a rough substrate. Comparison with experimental substrate
profiles determined by Hitchcock et al. [3] shows that (2)
can be used to realistically represent actual rough sub-
strates. For example, given the experimental profile in
Fig. 1(b) (solid line of the upper plots), k0 is readily

determined from k0 ¼ 2�n=
ffiffiffiffiffiffiffiffi
5=3

p
and �0 from �0 ¼ffiffiffiffiffiffiffiffiffih�2ip

, where n corresponds to the number of maxima
per unit length [10] and h�i denotes an ensemble average
over all substrate realizations. To obtain the dashed profile
as an approximation to the experimental profile using (2),
the finite length of the profile is matched to the period of

(2) to get N ¼ 26, which then allows us to determine �m

and �m by projecting the experimental profile onto their
corresponding harmonics. On the other hand, the lower
plot in Fig. 1(b) is generated with random �m and �m with
N ¼ 1000, where �0 and k0 are kept the same so that the
lower plot belongs to the same substrate family with the
upper one. In the following, a large number of substrate
realizations, typically 20 000 with N ¼ 1000, will be
utilized.
To facilitate the analysis, we introduce the contact line

fluctuation " and droplet shift ‘ along the substrate (see
Fig. 2), defined in terms of the contact line locations as

" ¼ 1

2
ðaþ � a�Þ � x0 and ‘ ¼ 1

2
ðaþ þ a�Þ; (3)

where x0 is the droplet radius when spreading occurs on a

flat substrate, which approaches
ffiffiffi
3

p
in the long-time limit.

Here ‘ is a measure of the distance the droplet midpoint is
displaced from x ¼ 0, whereas "measures the deviation of
the droplet radius from x0. Assuming �0 � 1, we also
expect that " � 1, so that linearizing the equations that
give the static locations of the contact lines about the flat-
substrate equilibrium yields

" ¼ 3�0

2
ffiffiffiffi
N

p XN
m¼1

ð�m sin�m‘þ �m cos�m‘ÞIð
ffiffiffi
3

p
�mÞ; (4)

XN
m¼1

ð�m cos�m‘� �m sin�m‘ÞJ ð ffiffiffi
3

p
�mÞ ¼ 0; (5)

where �m ¼ k0m=N, IðxÞ ¼ sincx� cosx� ðx=3Þ sinx
with sincx ¼ x�1 sinx and J ðxÞ ¼ x cosx� sinx. The ne-
glected terms of this linearization procedure are small
provided that �0k

2
0 � 1. To conform with this condition

we focus on substrate families with 1 � k0 � ��1=2
0 .

Hence, for a droplet with L ¼ 0:5 mm, �s ¼ 15�, and
substrate topographies with amplitudes 0:5 �m (�0 � 4	
10�4), �0k

2
0 < 1 for l > 77 �m. At such scales, slip is

more important than intermolecular forces in controlling
the spreading dynamics, as demonstrated in [11]. By the
central limit theorem, we also see from (4) that " is well-
approximated as a normally distributed random variable.

FIG. 1. (a) Sample substrate realizations using (2) for �0 ¼
10�3 and k0 ¼ 10, 20, and 40. (b) Top plot: Solid
line: Experimental profile from Hitchcock et al. [3] for an
alumina sample. Dashed line: Approximation obtained by pro-
jecting the experimental profile onto N ¼ 26 harmonics in (2).
Lower plot: Sample substrate realization for the same �0 and k0,
but N ¼ 1000.

FIG. 2. Droplet lying between a� 
 x 
 aþ on a random
topographical substrate. The droplet shift, ‘ ¼ 1

2 ðaþ þ a�Þ, is
the distance the droplet midpoint moves away from x ¼ 0, and
the contact line fluctuation, " ¼ 1

2 ðaþ � a�Þ � x0, measures

deviations of the contact line location away from the flat-
substrate radius, x0ðtÞ.
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Contributions to its mean are of Oð�0Þ and originate from
h�m sin�m‘þ �m cos�m‘i. If all equilibria are taken into
account however, this quantity vanishes and contributions
to the mean are of Oð�2

0Þ. Therefore, to fully assess the

effects of spatial heterogeneities, the equilibria attained
from the droplet dynamics need to be considered instead.

The IDEs obtained for deterministic substrates in [8] are
appropriately modified to model random spatial heteroge-
neities described by (2) and are linearized for " � 1. This
calculation is rather involved and lengthy. The final equa-
tions are of the form

_"þAðtÞ"¼ �0ffiffiffiffi
N

p XN
m¼1

ð�m sinkm‘þ�mcoskm‘ÞBðt;kmÞ;

_‘¼ �0ffiffiffiffi
N

p XN
m¼1

ð�mcoskm‘��m sinkm‘ÞCðt;kmÞ;

where AðtÞ, Bðt; kmÞ, and Cðt; kmÞ are complicated func-
tions of their arguments. Their time dependence enters
through x0 and its time derivative with x0 satisfying
3 _x0 ln½2x0=ð�e2Þ� ¼ 27x�6

0 � 1. The linearity of the equa-

tion for " implies that it is a normal variable for all times,
whose variance may be computed explicitly. Figure 3(a)
shows plots of the standard deviation of ",�", as a function
of time for �0 ¼ 5	 10�4 and k0 ¼ 20, 30, and 40. When
k0 ¼ 20, the theoretically predicted curve is indistinguish-
able from the one obtained from numerical experiments,
but the agreement tends to degrade as the condition
�0k

2
0 � 1 no longer holds. Determining the time evolution

of the standard deviation of ‘,�‘, explicitly is a formidable
task due to the highly nonlinear nature of the equation for
‘, but the early-time behavior can be found by linearizing
about ‘ ¼ 0. In Fig. 3(b) we show the evolution of �‘ as
computed from numerical experiments, together with the
early-time behavior predicted by the linear theory for the
same parameters as in Fig. 5(b). There is excellent agree-
ment up to t�Oð30Þ. Comparing the time scales over
which �" and �‘ saturate reveals that the droplet ‘‘foot-
print,’’ 2ð"þ x0Þ, approaches equilibrium over a shorter

time scale compared to the time for ‘ to reach equilibrium,
which suggests that the droplet slides without spreading
along the various substrate features to find the final equi-
librium position. In the long-time limit, we cannot solve for
‘ explicitly since (5) is nonlinear and also admits infinitely
many solutions. However, the evolution towards equilib-
rium fixes the solution to (5) to be the stable equilibrium
that is closest to ‘ ¼ 0, a problem which is reminiscent of
the highly nontrivial ‘‘first-passage problem’’ in probabil-
ity theory [10]. Interestingly, Fig. 4(a) reveals that the
probability density of ‘ as t ! 1, p‘, is far from being a
normally distributed random variable. By taking into ac-
count the mean distance between zeros of (5) [10], together
with the fact that on average half of the closest equilibria
are unstable, we find that

�2
‘ ¼

5

6
�2k�2

0

�
1� 1

2
sinc2

ffiffiffi
3

p
k0

�
þOðk�4

0 Þ (6)

for k0 � 1. Clearly, as the substrate features become
rougher the droplet has a tendency to shift or slide less
along the substrate. This behavior is confirmed in Fig. 4(b),
where we plot the theoretically predicted �‘ as a function
of k0 together with numerical experiments for different
substrate families, confirming also the independence of ‘
on �0.
From our numerical experiments we also found that

h"i< 0 in the long-time limit, thus suggesting that surface
roughness inhibits wetting. Such behavior appears to con-
tradict Wenzel’s theory, but it signifies the fact that the
droplet has to overcome the energy barriers that separate
the multiple equilibrium droplet states. This effect is dem-
onstrated in the recent experiments of Chung et al. [12],
where spreading perpendicular to the grooves of parallel-
grooved substrates violates Wenzel’s law, and is further
supported by the work of Cox [6] on wedge equilibria over
(deterministic) three-dimensional rough substrates, who
postulated that roughness-induced wetting enhancement
is due to a higher-order effect which manifests itself
when spreading does not occur perpendicular to the sub-
strate grooves. A semianalytical expression for h"i can be
obtained by noting that, from our numerical experiments,

h�m sin�m‘ þ �m cos�m‘i ¼ Fðk0ÞJ ð ffiffiffi
3

p
�mÞ=ðk0

ffiffiffi
3

p Þ,
where F appears to depend weakly on�0 and k0 and equals
3 for �0k

2
0 � 1. Based on this, h"i is found to be

h"iapprox � � 3

8
�0ð2� cos2

ffiffiffi
3

p
k0Þ þOð�0k

�1
0 Þ; (7)

for k0 � 1. This implies that the mean apparent contact

angle increases by an amount 2jh"ij= ffiffiffi
3

p
to leading order in

". Figure 5(a) depicts a plot of (7) as a function of k0
together with the mean obtained in numerical simulations
for substrates with �0 ¼ 10�3. For smaller k0, the agree-
ment between the semianalytic approximation and the
numerical experiments is evident, but as the substrate
becomes more rough so that �0k

2
0 � 1 is violated and

nonlinear effects become appreciable, there is a clear
deviation towards a progressive reduction of the mean

FIG. 3. Spreading dynamics for �0 ¼ 5	 10�4 and k0 ¼ 20,
30, and 40. (a) Standard deviation of " as a function of time. The
numerical experiments (solid line) are indistinguishable from
theory (dashed line) for k0 ¼ 20. (b) Standard deviation of ‘ as a
function of time. The early-time asymptotics agree with numeri-
cal experiments up to t�Oð30Þ. For large times the solid lines
asymptote at values predicted from the long-time analysis.
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droplet radius. Hence the apparent contact angle tends to
increase with substrate roughness, thus pointing towards a
substrate-induced, hysteresislike effect.

The variance of " can be deduced from (4) by converting
the Riemann sum into an integral by taking N ! 1,

�2
" ¼ 1

8
�2
0k

2
0ð1� 3sinc2

ffiffiffi
3

p
k0Þ þOð�2

0Þ; (8)

when k0 � 1. The theoretically predicted �" is in very
good agreement with the simulated one as shown in
Fig. 5(b), where we plot �" as a function of k0 when �0 ¼
5	 10�4 and �0 ¼ 10�3. Different substrate descriptions
might have been used, as, for example, representations that
exhibit statistical self-affinity, whose spectral density fol-
lows the power law / k2D�5 [13], where 1<D< 2 is the
fractal dimension. The differentiability requirement of
�ðxÞ together with the fact that in reality a self-affine
structure cannot persist for all length scales requires im-
posing lower and upper wave number cutoffs. However, the
results are qualitatively the same since the leading-order

variance of " differs from the leading order of (8) only by a
factor 3ð2�DÞðg4�2D � g2Þ=½ðD� 1Þð1� g4�2DÞ�, that
depends on two additional parameters, namely, D and the
lower to upper cutoff wave number ratio g. Numerical
studies of �‘ also confirm qualitative agreement.
To conclude, we have presented the first detailed and

systematic investigation of the motion of 2D droplet fronts
over randomly varying shallow substrates by using a model
derived from first principles. Droplet equilibria alone can-
not fully determine the effects of random substrates on
wetting. For arbitrary times, the evolution of ‘ and "
suggests that on average the droplet has the tendency to
slide without spreading along the substrate before reaching
equilibrium. In the long-time limit, ‘ and " scale with
�2

" � �2
0k

2
0 and �2

‘ � k�2
0 , respectively. We believe that

these results will motivate further analytical and experi-
mental studies on the role of heterogeneities on wetting
hydrodynamics.
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FIG. 5. Statistics of " for the same parameters as in Fig. 4.
(a) Comparison of the numerically determined h"i and h"iapprox
as a function of k0. (b) Comparison of the theoretical and
numerical �" as a function of k0. The agreement is excellent
for �0k

2
0 � 1.

FIG. 4. Statistics of ‘ for k0 ranging from 10 to 40 with
�0 ¼ 5	 10�4 (+) and 10�3 (	). (a) Probability density func-
tion of ‘ when �0 ¼ 5	 10�4 and k0 ¼ 20 compared with a
normal density of the same variance (dashed line). (b) Standard
deviation of ‘ as a function of k0, illustrating the excellent
agreement of (6) with numerics.
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