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Direct Measurement of Intermediate-Range Casimir-Polder Potentials
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We present the first direct measurements of Casimir-Polder forces between solid surfaces and atomic
gases in the transition regime between the electrostatic short-distance and the retarded long-distance limit.
The experimental method is based on ultracold ground-state Rb atoms that are reflected from evanescent
wave barriers at the surface of a dielectric glass prism. Our novel approach does not require assumptions
about the potential shape. The experimental data are compared to the theoretical predictions valid in the
different regimes. They agree best with a full QED calculation.
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One of the results of most fundamental importance in
quantum electrodynamics (QED) is the appearance of
zero-point fluctuations of electromagnetic fields in vac-
uum, i.e., the vacuum energy. This energy leads only in
very special cases to measurable effects. One example is
the well-known Casimir and van der Waals forces [1,2]. In
addition to their fundamental importance, a detailed under-
standing of these forces is crucial for testing new funda-
mental physics at short distances such as non-Newtonian
gravitational forces [3,4]. Furthermore, they have impor-
tant technological implications for the development of
micromachines with nanoscale moving parts [5,6].
Today, Casimir forces between solids can be measured
with high precision [7-9]. These measurements are all
done with objects that are large compared to the relevant
distances where Casimir forces become dominant.
Therefore, the underlying theory contains the macroscopic
properties of the objects, i.e., the dielectric functions.
Moreover, also the geometry of the macroscopic bodies
plays an important role due to the nonadditivity of Casimir
forces. A much cleaner situation is given when the test
object is microscopic. This is in good approximation true
for a single atom. In this case the force by which the atom
is attracted towards a surface is often referred to as the
Casimir-Polder (CP) force. In the limits of short and long
distances CP forces can be approximated by different
power laws [1,10], in the transition regime the full QED
integral must be solved.

In the last two decades many efforts have been made to
measure CP forces including sophisticated approaches
such as diffraction and interferometry of cold atom beams
at thin transmission gratings [11,12] and quantum reflec-
tion of atoms from solid surfaces [13—16]. In these experi-
ments CP forces were studied indirectly by fitting the
coefficients of the theoretical surface potentials to the
measured data. Direct methods that have been developed
up to now can be divided into spectroscopic [17-20] and
kinetic measurements [21,22]. In this article the transition
regime is probed for the first time by a direct model-free
measurement. This is done by reflecting ultracold atoms
from evanescent wave barriers similar to previous work
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[21]. However, here we systematically vary the mirror
potential and introduce a new data analysis which allows
for the direct investigation of surface potentials at subwa-
velength distances from the surface. The new method
makes use of a known repulsive potential Vgw(z) that is
added to the unknown attractive surface potential Vgp(z)
with the goal to generate a potential barrier. By varying the
strength of Vgw(z), the height and the position of the
barrier can be adjusted. The height is measured by reflect-
ing cold atoms of a given energy. The position can be
determined from the derivative of the barrier height with
respect to the strength of Vi (z). This last step is the key
feature for reconstructing the unknown surface potential.

The experimental situation is shown in Fig. 1. An eva-
nescent wave (EW) leaking out from the surface of a
transparent substrate generates a repulsive dipole potential
of the form

Vew = Copexpl -2 ()

20
with a constant Cy, laser power P and the field decay length
Zo [23]. The total potential is now the sum of the (attrac-
tive) unknown surface potential Vqr and the EW Potential

FIG. 1 (color online). Experimental situation. A repulsive eva-
nescent wave potential Vgw and an attractive surface potential
Vsr sum up to build a barrier at a distance zz from the surface
with height Ep.

© 2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.104.083201

PRL 104, 083201 (2010)

PHYSICAL REVIEW LETTERS

week ending
26 FEBRUARY 2010

Vit = Vsg T Vew. ()

If the repulsive potential is strong enough, a potential
barrier is formed at a distance zz(P) from the surface. At
the maximum V/,, = 0, which means that

P
Vip(z = zp) = 2Cy— exp{—2 Z—B}. 3)
20 20

Furthermore, the height of the barrier is given by

Ep = Vep(zg) + CoP exp{—Zi—B}. 4)
0

Differentiating (4) with respect to P, taking the inner
derivatives into account (note that zz(P) is a function of
P) and substituting Eq. (3) delivers:

dEB { ZB}
—2 = (Cyexp{—2—+. 5
1P 0 eXp 2 (%)

The crucial point here is that this derivative depends only
on the evanescent wave potential and not on the surface
potential. From this expression the position of the barrier
can be calculated to be

o (1 dE
25(P) = — %0 1n<c—O d—PB). (6)

With the knowledge of the barrier height E and the barrier
position zz the unknown surface potential Vgr(z5) can be
determined by solving (4).

The experimental task is to measure the height of the
potential barrier as a function of the laser power. For a
given laser power this is done by classical reflection of an
ultracold atom cloud with variable kinetic energy from the
barrier. The experiment is carried out with a setup ex-
plained in detail in [24]. Here only a short summary is
given. An ultracold atomic cloud is prepared in a Joffe-
Pritchard type trap some hundred micrometers below the
superpolished surface of a dielectric glass prism which is
mounted upside down in a vacuum chamber. Almost pure
condensates can be generated with some 10° atoms. For
this experiment however, only very cold thermal clouds are
prepared in order to avoid effects due to the interaction
between the atoms at high density. The ultracold 3'Rb
cloud is held in the magnetic trap at a fixed distance z;
below the prism surface. Then a vertical laser beam (wave-
length A = 830 nm) that propagates perpendicularly
through the prism from the top is switched on adiabatically
in order to generate a dipole trap with radial and axial
trapping frequencies of w,, = 27 X 50 Hz and w,, <
27 X 0.1 Hz. In this combined magnetic-dipole trap a
cloud temperature of 7 ~ 100 nK is measured. Now the
atoms are accelerated towards the surface by a sudden shift
of the magnetic trapping minimum to a new variable
position z,. After a waiting time of a quarter of an oscil-
lation period during which the atoms accelerate in the
shifted trap, the magnetic field is quickly ramped to a

constant gradient which compensates for the gravitational
force. The atoms now move towards the surface with a
nearly constant velocity v. It is determined by absorption
imaging of the position of the cloud in the first few milli-
seconds of its motion. While the atoms move to the surface
they are slightly accelerated due to residual curvature of
the levitation potential. This effect is taken into account as
a correction of the measured velocity. The velocity at the

surface is then given by v = 4/v3 + wi 2} with w),, =

27 X 4 Hz. During the reflection of the atoms the dipole
trap guarantees radial confinement. The measured radial
FWHM width of the atomic cloud is 40 pwm such that the
atoms are reflected only from the center of the evanescent
wave. There, the potential barrier reaches its maximum due
to the Gaussian intensity distribution of the EW laser spot.
The EW laser is centered around A = 765 nm with a
spectral width of AA = *1 nm. The vertical potential
generated by the dipole trap is very weak and can be
neglected. After contact with the surface the number of
reflected atoms is determined by absorption imaging. The
measurement is repeated for various trap displacements
Az = z, — z; which correspond to different velocities v.
Typical results are shown in the inset of Fig. 2. The data
points show a gradual decrease from the situation where all
atoms are reflected (R = 1) to full transmission R = 0.
The width of this decrease is mainly dominated by the
Gaussian velocity distribution of the atoms corresponding
to the temperature of the cloud. It is also slightly affected
by the inhomogeneous barrier height due to the Gaussian
transverse intensity profile of the EW laser beam.
Nonclassical broadening effects like quantum reflection
and tunneling may play a role for the higher laser powers
used, where the surface potential is steepened by the
evanescent wave [25]. However, its influence on the center
of the decrease and by that on the measured barrier height
is negligible. Thus the data points in Fig. 2 are fit with a
model which implements only the two classical broadening
mechanisms mentioned above. The result of the fits for
various laser powers is plotted in the main part of Fig. 2
(open circles). For comparison, barrier heights are plotted
as derived from the theoretical CP potentials valid in the
different regimes:

(z>1),
(z ),

— Cs

Vvdw -7
_ _C
Vret - e

Vep = { (7

with a typical distance [ separating both regimes. For
calculating the potential coefficients C; the values for an
ideally conducting surface C}C are taken from [26] and
corrected for the dielectric surface. In the case of the Cy4
coefficient the correction is given by a factor ®(n) with
refractive index n = 1.512 [2]. In the case of the Cj
coefficient an often made approximation leads to a correc-
tion factor of ﬁ Our corrected coefficients are C; =
5.8 X 107% Jm? and C, = 5.4 X 107 Jm*. The transi-

tion length can be estimated from the intersection between
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FIG. 2 (color online). Inset: Typical measurement of reflectiv-
ity R for a laser power of P = 134 mW. The fitted barrier height
is Ep = kg X (3.62 = 0.03) uK. Main figure: Dependence of
the barrier height on the laser power. The open circles are data
points obtained from curves similar to the ones shown in the
inset. The solid line close to the data points is a constraint fit to
the data as explained in the text with the dashed lines limiting the
95% confidence interval. The three curves (vdW, ret, trans) are
theoretical expectations for the barrier height assuming a non-
retarded van der Waals-like potential, a retarded potential and
the full QED potential.

the retarded and the nonretarded curve to be [ = g—;‘ =

92 nm. In this range we calculate the Casimir-Polder po-
tential correctly by solving the full QED formula (5.39) in
[27]. For this purpose the magnetic permeability of glass is
u(w) = w = 1 and the atomic polarizability a(w) follows
from [28]. The dielectric function €(w) is determined from
optical data which are available for glass in a wide range
[29]. The barrier height which is derived from this correct
CP potential fits best to the experimental data, although
also here a deviation is observed. This deviation is particu-
larly large for high laser powers, where the data exceed the
theoretical values. A model-free comparison between ex-
periment and theory is possible, if the surface potential is
extracted from the measurement as explained above. The
required derivative % ~ M
n+1)—P(n)
smoothened curve that can be obtained by fitting the mea-
sured barrier heights. The fit function must be chosen very
carefully in order to stay model-free. A polynomial fit
function, e.g., would implicitly assume a surface potential
of a certain shape. To maintain generality the values of the
fit function at the measured laser powers are the parameters
of the fit. Furthermore, the fit function fulfils the following
three constraints: (1) the first derivative is positive at each
point, (2) the second derivative is also positive at each
point, and (3) the third derivative is negative at each point.
The physical reason for (1) is that an increasing laser power
leads to a growing barrier height. Constraint (2) is equiva-
lent to the fact that for increasing laser power the barrier
gets closer to the surface and constraint (3) means that the
rate at which the barrier gets closer to the surface de-
creases. These assumptions are valid for any attractive

is taken from a

surface potential whose attraction is growing with decreas-
ing distance from the surface. This is the only assumption
on the potential shape we make. The result of the fit is
plotted as dots in Fig. 2. To guide the eye the fit points are
linearly interpolated. From the fit points the surface poten-
tial is determined by Eqgs. (4) and (6). The only parameters
in this calculation are the ones describing the evanescent
wave: the field decay length z; is calculated from a mea-
sured incidence angle of # = 43.4° = 0.1°, and a laser
wavelength of A = 765 nm to z, = (430 = 10) nm. The
proportionality factor Cy, is calculated from standard dipole
trap theory [23] with a measured beam waist of wy, =
(170 £ 5) wm and wg, = (227 = 5) um. The evanescent

wave intensity is given (for p-polarized light) by |%—W |> =

1 4n2 cos(6)?

n [cos()?+n?{n*sin(0)>*—1}]°
prism. With these parameters the proportionality constant
is Cp = (1.38 = 0.05) X 10727 J/W [30].

Figure 3 shows the surface potential determined from
the measured barrier height (dots). Statistical errors are due
to the spread of the data points in Fig. 2 around the fit
curve. For the vertical axis they are given by a shift of the
fit curve to the 95% confidence interval boundaries. For the
horizontal axis the evaluation of the statistical error de-
pends on the error of the gradient of the fit curve. An
estimation of this error can be given by calculating the
mean gradient and assuming a maximum gradient by a
linear interpolation between the lower left border of the
confidence interval with the upper right border. For the
minimum gradient the upper left border is connected with
the lower right border. This gives an uncertainty in the
gradient 6(”%*). The uncertainty of the barrier position §zz
is then given by means of (6). Systematic errors are due to
the uncertainty for zy, Cy, P and v. Taking into account
these uncertainties the measurements agree best with the
full QED calculation. The retarded and the static potential
can be excluded. Other experiments show that patch po-
tentials from adsorbed Rubidium atoms can play a role in
the surface potential [31]. Such potentials increase the
attraction between surface and atom. An increase is also
expected from charged particles at the surface and from
photoinduced modifications of atom-surface interactions,
as described in [32]. In contrast, our measurements show a
slightly smaller attraction than theoretically expected.
Therefore, additional attractive potentials seem to be neg-
ligible. For the patch potentials this might be due to a
permanent exposure of the prism surface to the evanescent
wave which can either lead to laser-induced desorption of
atoms [33] or to an increased diffusion of atoms on the
surface. Charged particles seem to exist only in small
number on the surface, and laser-induced modifications
of surface forces (e.g., by the EW) are calculated to be
negligible due to the large detuning used in this setup.

In this article direct measurements of the Casimir-Polder
force between ground-state Rb atoms and the surface of a
dielectric glass prism at distances between 160 nm and

with the refractive index n of the
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FIG. 3 (color online). Measured and theoretical Casimir-
Polder potentials: in the large figure the theoretical surface
potentials are plotted, i.e., the nonretarded van der Waals poten-
tial (vdW) and the retarded Casimir-Polder potential (ret). The
full theoretical curve also valid in the transition regime (trans)
approaches the retarded curve for large distances and the non-
retarded curve for small distances. The inset magnifies the
colored box, in which the measured data points are lying.
Statistical and systematic errors are indicated by the error bars,
and the grey shaded area, respectively.

230 nm are presented. A novel method has been introduced
which is based on a test potential generated with an optical
evanescent wave at the glass surface. The measurements do
not coincide with the limiting formulas valid in the static
and in the retarded regime. A better agreement is reached
with the full QED calculation, although also here a devia-
tion is observed. In addition to the mentioned measurement
errors, this deviation might be caused by the imprecise
knowledge of the dielectric function of the used borosili-
cate glass prism. For calculating the theoretical curve the
well-known dielectric function of SiO, glass has been
used. However, the optical properties of glasses vary de-
pending on the exact type of glass [34]. It is therefore pos-
sible that the theoretical curve slightly deviates from the
real situation in the experiment. Already a moderate in-
crease in the experimental resolution will make it possible
to discern between such theoretical and experimental
eITorS.
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