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We consider the time-optimal control by magnetic fields of a spin 1
2 particle in a dissipative environ-

ment. This system is used as an illustrative example to show the role of singular extremals in the control of

quantum systems. We analyze a simple case where the control law is explicitly determined. We

experimentally implement the optimal control using techniques of nuclear magnetic resonance. To our

knowledge, this is the first experimental demonstration of singular extremals in quantum systems with

bounded control amplitudes.
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Optimal control theory can be viewed as a generalization
of the classical calculus of variations for problems with
dynamical constraints. Its modern version was born with
the Pontryagin maximum principle (PMP) in the late 1950s
[1]. Its development was originally inspired by problems of
space dynamics, but it is now a key tool to study a large
spectrum of applications such as robotics, economics, and
quantum mechanics. Solving an optimal control problem
means finding a particular control law, the optimal control,
such that the corresponding trajectory satisfies given
boundary conditions and minimizes a cost criterion.
Examples of cost functionals of physical interests are the
energy and the duration of the control. A strategy for
solving an optimal control problem consists in finding
extremal trajectories which are solutions of a generalized
Hamiltonian system subject to the maximization condition
of the PMP. In a second step, one selects among the
extremals the ones which effectively minimize the cost
criterion. Although its implementation looks straightfor-
ward, the practical use of the PMP is far from being trivial
and each control has to be analyzed using geometric and
numerical methods. The first applications of optimal con-
trol theory in quantum dynamics began in the mid 1980s
[2]. Continuous advances have been done both theoreti-
cally and experimentally [3]. Among the set of extremal
trajectories determined from the PMP, one distinguishes
regular and singular ones (see below for a concrete defini-
tion). Surprisingly, whereas regular extremals are well
known, the existence and the potential applications of
singular extremals in quantum control have been largely
ignored in the chemical-physics literature and only few
results exist [4–9]. Note that the zero field used in the
optimal control of quantum systems with unbounded con-
trol [8,10] can be viewed as a limit case of singular
extremals when the maximum amplitude of the control
goes to infinity (see [6] for details). In this Letter, we
consider a simple physical example, a spin 1

2 particle in a

dissipative environment, which highlights the crucial role
of singular controls. For instance, a gain of almost 60% in

the control duration can be obtained over the standard
inversion recovery sequence when using singular extre-
mals (see Fig. 1). We take advantage of this example to
explain the mathematical framework and to detail in the
last section its physical interpretation. The optimal control
law is also implemented experimentally using techniques
of nuclear magnetic resonance (NMR).
In the considered case of resonant radiation, the state of

the system can be completely represented by a two-
dimensional state vector X 2 R2 and a single control u is
sufficient [4]. The corresponding controlled system is de-
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FIG. 1 (color online). Plot of the optimal trajectories (blue or
dark gray curve) and of the inversion recovery sequence (green
or gray curve) in the plane (y, z) for T1 ¼ 740 ms, T2 ¼ 60 ms
and !max=ð2�Þ ¼ 32:3 Hz. The experimentally measured tra-
jectories are represented by filled squares and open diamonds,
respectively. The corresponding control laws are represented in
the lower panel. In the upper panel, the small insert represents a
zoom of the optimal trajectory near the origin. The dotted line is
the switching curve originating from the horizontal singular line.
The vertical green line corresponds to the intuitive solution. The
solid blue curve is the optimal trajectory near the origin.
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fined by differential equations of the form _X ¼ F0ðXÞ þ
uF1ðXÞ and the control parameter satisfies juj � u0, which
defines the set of admissible controls. The objective of the
control is to determine a function uðtÞ such that the system
goes in minimum time from the initial point X0 to a target
state X1. We use for that the PMP which can be sketched as
follows [1,11,12]. We introduce the pseudo-Hamiltonian
H ðX; P; uÞ ¼ PðF0 þ uF1Þ where the adjoint state P 2
R�2 for any time t. An optimal trajectory is solution of the
equations

_XðtÞ ¼ @H
@P

; _PðtÞ ¼ �@H
@X

;

where u is obtained from the maximization condition
H ðX; P; uÞ ¼ HðX;PÞ ¼ maxv2½�u0;u0�½H ðX; P; vÞ�
with the condition HðX; PÞ � 0 [12]. For controlled sys-
tems on the coordinate plane R2, the solutions of the PMP
take a very simple form. We consider the switching func-
tion �ðX; PÞ ¼ PF1 [12], which is the only term of H on
which the control can act. When �ðX; PÞ � 0, one imme-
diately sees that the maximization condition leads to bang
controls, i.e., to controls of constant and maximum ampli-
tude of the form u ¼ u0 sgn½�� ¼ �u0. These extremals
are the regular ones. If � vanishes in an isolated point then
the control field switches from �u0 to �u0. The singular
situation is encountered when the switching function van-
ishes on a given time interval. In this case, the control
cannot be directly determined by the maximization condi-
tion. The control parameter is instead computed by requir-
ing that�ðX; PÞ ¼ 0 on the singular arc, which leads to the

relations �ðX; PÞ ¼ _�ðX; PÞ ¼ €�ðX; PÞ ¼ � � � ¼ 0. This
condition allows us to identify the manifolds, here lines
of the coordinate plane on which the singular trajectory
lies. Note also that in this case, the control field is not
constantly equal toþu0 or�u0, but belongs to the interval
[� u0, u0]. The final optimal control law is determined by
gluing together singular and regular arcs.

One of the most promising fields of applications of
quantum control is the control of spin systems in NMR
[13]. We use such systems in this Letter to show the role of
singular extremals in the time-optimal control of quantum
dynamics. In a first step, we consider a spin 1

2 particle in a

dissipative environment whose dynamics is governed by
the Bloch equation:
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where ~M is the magnetization vector and ~M0 ¼ M0 ~ez is the
equilibrium point of the dynamics. We assume that the
control field ~! ¼ ð!x;!y; 0Þ satisfies the constraint j ~!j �
!max. We introduce the normalized coordinates ~x ¼
ðx; y; zÞ ¼ ~M=M0, which entails that at thermal equilib-
rium the z component of the scaled vector ~x is by definition
þ1. The normalized control field which satisfies juj � 2�

is defined as u ¼ ðux; uy; 0Þ ¼ 2� ~!=!max, while the nor-

malized time � is given by � ¼ ð!max=2�Þt. Dividing the
previous system by !maxM0=ð2�Þ, one deduces that the
dynamics of the normalized coordinates is ruled by the
following system of differential equations:
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where � ¼ 2�=ð!maxT2Þ and � ¼ 2�=ð!maxT1Þ.
We consider the control problem of bringing the system

from the equilibrium point ~M0 to the zero-magnetization
point which is the center of the Bloch ball. In the setting of
NMR spectroscopy and imaging, this corresponds to satu-
rating the signal, e.g., for solvent suppression or contrast
enhancement, respectively [14]. Since the initial point
belongs to the z axis, it can be shown that the controlled
system is equivalent to a system with only one control
where, e.g., uy ¼ 0 [4]. Roughly speaking, this means

that the meridian planes of the Bloch sphere play all the
same role for the optimal trajectory. Taking uy ¼ 0, we are

thus considering a problem in a plane of the form:

_y
_z

� �
¼ ��y

�� �z

� �
þ u

�z
y

� �

where the subscript x has been omitted for the control
parameter. We can then apply for this system the theoreti-
cal description of the previous paragraph where F0 ¼
ð��y; �� �zÞ and F1 ¼ ð�z; yÞ.
As detailed above, we introduce the switching function

� ¼ PF1 ¼ �pyzþ pzy [12]. Using the fact that d�
dt ¼

PV where V ¼ ð��þ �z� �z;��yþ �yÞ and the rela-
tions PF1 ¼ PV ¼ 0 on a singular arc, one deduces that
the vectors F1 and V must be parallel on this set since P is
non zero. This means that the singular trajectories belong
to the set S ¼ fX 2 R2j detðF1; VÞ ¼ 0g which corre-
sponds to the union of the vertical line y ¼ 0 and of the
horizontal one with z given by

z0 ¼ � �

2ð�� �Þ ¼ � T2

2ðT1 � T2Þ
if � � � (or equivalently if T1 � T2). The corresponding
singular control us, which is determined from the condition
€�ðX; PÞ ¼ 0, is given by

usðy; zÞ ¼ �y�ð�� 2�Þ � 2yz0ð�2 � �2Þ
2ð�� �Þðy2 � z20Þ � �z0

: (1)

Note that the control us is not defined as a function of the
time but as a function of y and z. One also deduces that this
singular control vanishes on the vertical singular line and
that it is admissible, i.e., jusj � 2�, on the horizontal one if
jyj � j�ð�� 2�Þj=½2�ð2�� 2�Þ�. For smaller values of
y, the system cannot follow the horizontal singular arc and
a switching curve appears from the point where the admis-
sibility is lost [12]. A switching curve is a line in the plane
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(y, z) where the optimal control changes sign when cross-
ing it.

The optimality of the singular trajectories can be deter-
mined geometrically by introducing the clock form �
which is a 1 form such that �ðF0Þ ¼ 1 and �ðF1Þ ¼ 0.
The form � is defined on points where F0 and F1 are not
collinear. Let �1 and �2 be two extremals starting and
ending at the same points and �1 and �2 the corresponding
times needed to follow the two trajectories. The clock form
allows us to determine the time taken to travel a path since,
for instance,

R
�1
� ¼ R�1

0 �ð _XÞd� ¼ R�1
0 �ðF0Þd� ¼ �1.

To compare �1 and �2, we consider the loop �1

S
��1
2

where ��1
2 is �2 run backward. Introducing the surface D

delimited by �1 and �2, a simple computation leads toR
�1

S
��1
2
� ¼ R

D d�. Since d� is equal to zero only on the

singular set and remains of constant sign outside [11], one
obtains that �1 � �2 ¼

R
D d�. In particular, it can be

shown that the horizontal singular line is locally optimal
and that the vertical one is optimal if z > z0.

The control problem used for illustration is defined by
the relaxation parameters ��1 and ��1 (expressed in the
normalized time unit defined above) of 23.9 and 1.94,
respectively. We compare the optimal control law with an
intuitive one used in NMR. The intuitive solution, the so-
called inversion recovery (IR) sequence [14], is composed
of a bang pulse to reach the opposite point of the initial
state along the z axis followed by a zero control where we
let the dissipation act up to the center of the Bloch ball. The
optimal and the IR solutions are plotted in Fig. 1.
Geometric tools allow us to show that the optimal control
is the concatenation of a bang pulse, followed successively
by a singular control along the horizontal singular line,
another bang pulse and a zero singular control along the
vertical singular line. Figure 1 displays also the switching
curve which has been determined numerically by consid-
ering a series of trajectories with u ¼ þ2� originating
from the horizontal singular set where � ¼ 0. The points
of the switching curve correspond to the first point of each
trajectory where the switching function vanishes. We have
also checked that the second bang pulse of the optimal
sequence does not cross the switching curve up to the
vertical singular axis. In this example, a gain of 58% is
obtained for the optimal solution over the intuitive one,
which clearly shows the importance of singular extremals.

Both pulse sequences were implemented experimentally
on a Bruker Avance 250 MHz spectrometer with linearized
amplifiers. The experiments were performed using the
proton spins of H2O. The sample consists of 10% H2O,
45% D2O, and 45% deuterated glycerol, saturated with
CuSO4. At room temperature (298 K) the relaxation times
were T1 ¼ 740 ms, T2 ¼ 60 ms, which correspond to the
unitless values given above for !max=ð2�Þ ¼ 32:3 Hz. For
this value of!max, the duration of the intuitive IR sequence
is 478 ms, whereas the optimal sequence has a duration of
only 202 ms. The experimentally measured trajectories of
the Bloch vector are also shown in Fig. 1 for the optimal

sequence (filled squares) and the IR sequence (open dia-
monds). The reasonable match between theory and experi-
ment confirms that the complex pulse sequence required
for optimization can really be implemented with modern
NMR spectrometers.
Figure 2 displays the evolution of the optimal solution

and of the intuitive one when the maximum amplitude of
the control field varies. The ratio between the two control
durations Topt and TIR is also plotted as a function of

!max=2�. For low values of !max, the optimal pulse and
the IR sequence are very similar and the ratio is close to 1.
Note that for !max=2� � 2:7, the target state cannot be
reached from the initial point so the ratio cannot be de-
fined. We observe a rapid decrease of this ratio when !max

increases showing the crucial role of the horizontal singu-
lar line. The gain tends asymptotically to a constant value
when !max ! þ1 for fixed values of T1 and T2. In this
limit, we can neglect the duration of the different bang

controls. Using the relation!s ¼ !max

2� us ¼ T2�2T1

2T1ðT1�T2Þy , one
obtains by a direct integration of the Bloch equation that

Topt !
!max!þ1

T2

2
log

�
1� 2

�T2

�
þ T1 log

�
2T1 � T2

2ðT1 � T2Þ
�
;

TIR !
!max!þ1T1 log2;

where � ¼ T2ðT2�2T1Þ
2T1ðT1�T2Þ2 , which leads to a limit ratio of 0.389.
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FIG. 2. (top) Ratio Topt=TIR as a function of !max=ð2�Þ. The
horizontal line indicates the position of the limit ratio when
!max ! þ1. (bottom) Optimal trajectories (left part) and the
inversion recovery sequences (right part) for four values of
!max=ð2�Þ, 2.7, 7, 32.3, and 500 Hz. The vertical lines of the
top panel correspond to the four solutions of the bottom panel.
The solid curve is the case considered in Fig. 1. The black dot
and the cross represent, respectively, the positions of the initial
and final points. The small arrows indicate the way the trajecto-
ries are followed.
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Physical interpretation of the optimal control strategy.—
In the example considered, the role of singular extremals
can be physically interpreted in light of the dissipation
effects. We introduce the polar coordinates (r, �) such as
y ¼ r cos� and z ¼ r sin�. A straightforward computation
then leads to

_r ¼ �ð�cos2�þ �sin2�Þrþ � sin�;

d _r=d� ¼ �ð�� �Þr sinð2�Þ þ � cos�

(see Fig. 3). One immediately sees that the control field u
cannot modify the radial velocity but only the orthoradial
one _�. To reach in minimum time the center of the Bloch
ball, the idea is then at each time to be on the point where
j _rj is maximum for a fixed value of the radial coordinate r.
The singular control us defined in Eq. (1) is determined so
that the dynamics stays on the line of maximum variation
of the radius r. In other words, this means that the set of
solutions of the equation d _r=d� ¼ 0 is exactly the set S.
One deduces that the strategy of the optimal control can be
thought of as follows. A first bang pulse is applied to the
system to reach the horizontal singular line. The radius r is
then optimally reduced along this curve as long as the
control field satisfies the constraint of the control problem.
The local optimality of this line can be recovered by
showing that the points of this set are associated to maxima
of the function j _rjðr; �Þ for r fixed. When the limit of
admissibility is attained, a new bang pulse is applied to
reach the vertical singular line in a region where this set is
optimal. We finally arrive to the target state along this
curve. We recover here a mechanism introduced in [10]
for cooling a two-level system.

Conclusion and prospective views.—We hope that this
example of singular extremals in the control of a spin 1

2

particle in a dissipative environment will motivate system-
atic investigations of singular controls in quantummechan-

ics. The question of the role of singular extremals in more
complicated systems or in quantum computing remains
completely open. The next step of this study could be the
analysis of the optimal control of coupled spins with
bounded fields generalizing thus the different works in
this domain with unbounded controls [8].
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FIG. 3 (color online). Contour plot of the function d _r=d� as a
function of y and z. The solid lines represent the set of zeros of
d _r=d� or the singular set S (see the text). The time-minimum and
time-maximum singular lines are plotted, respectively, in black
and red (light gray). The circle is the projection of the Bloch
sphere in the plane (y, z).
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