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We propose a novel generalized method for mass measurements based on phase space singularity

structures that can be applied to any event topology with missing energy. Our method subsumes the well-

known end point and transverse mass methods and yields new techniques for studying ‘‘missing particle’’

events, such as the double chain production of stable neutral particles at the LHC.
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Introduction.—At the Large Hadron Collider (LHC),
physics beyond the standard model (SM) may reveal itself
in signals with large missing transverse energy. The reason
is that many TeV scale models require new symmetries that
distinguish the new particles from the SM fields, which can
result in stable neutral particles that can be attractive dark
matter candidates. One example is the neutralino lightest
supersymmetric particle (LSP) in the minimal supersym-
metric standard model (MSSM). The cascade decays of
superpartners result in final state LSP’s that are ‘‘missing
particles’’ that escape detection.

Measuring the masses of these missing particles is of
great importance but is challenging. The full S matrix can
be used to determine the masses through the event distri-
bution profile, but this is highly model-dependent. Mass
measurement techniques thus rely on kinematic analysis,
which does not allow for global fits using the event profile,
but provide useful information via the phase space struc-
ture defined by the kinematic constraints.

Event topologies with missing energy may or may not be
directly reconstructable. For reconstructable events, the
number of constraints equals or exceeds the number of
invisible particle momentum components. By reconstruct-
ing the momenta, the likelihood of a given test mass
parameter for each individual event can be obtained [1].
Though powerful, this method can be used only for ex-
clusive processes and there are typically many combina-
toric factors due to the large number of particles.

For nonreconstructable processes, it is not possible to
obtain a likelihood contribution from individual events or
fit the event profile globally using only kinematics. Mass
measurement techniques include using the end points of
kinematic variables such as the invariant mass distribution
[2], or kinematic cusps [3]. Recently, there has been an
emphasis on ‘‘implicit’’ variables that depend on trial
masses [4], such as the end point of the mT2 distribution,
which has a kink when the trial masses equal the true
masses [5]. Momentum reconstruction is also possible for
events near themT2 end point [6], and there are attempts to
understand the mT2 kink based on end points [7].

It is not an accident that these methods use end points,
cusps, and kinks, which are singularities in the observable

phase space. In this Letter, we develop the general theory
of kinematic singularities and provide a systematic method
for obtaining new implicit optimized variables that best
exploit the singularity structure. We begin with a system-
atic analysis of phase space singularities. We then con-
struct kinematic variables that we call singularity
coordinates and apply the method to cascade decays and
double missing particle chains to show how previously
studied examples are unified within our approach. The
mathematical details and additional examples will be pre-
sented in a future publication [8].
Kinematic singularities.—A singularity is a point where

the local tangent space cannot be defined as a plane, or has
a different dimension than the tangent spaces at nonsingu-
lar points. The full phase space does not exhibit singular-
ities (we do not consider cases of singularities due to soft or
collinear massless particles). However, if only a subset of
the momenta are measured, the relevant quantity is the
projection of the full phase space on to the observable
phase space of the measured momenta. Each observable
phase space point can correspond to multiple configura-
tions in the full phase space, as in Fig. 1. The multiplicity

FIG. 1 (color online). A schematic diagram describing the
relation between the full phase space and the projected observ-
able phase space.
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volume changes abruptly upon crossing a boundary where
phase space folding occurs. The observable phase space
then has a nonsmooth density, reminiscent of caustics in
optics.

Given the visible momenta qjðj ¼ 1; . . . ; mÞ and the

invisible momenta xkðk ¼ 1; . . . ; nÞ, the full phase space
is embedded in ðnþmÞ-dimensional Euclidean space as
the solution space of the N constraints:

giðx; qÞ ¼ 0; ði ¼ 1; . . . ; NÞ; (1)

where the gi are coupled polynomial equations that are at
most of quadratic degree. In mathematics terminology,
such a space is called an affine variety.

At the singularity, at least one direction of the tangent
plane in the full phase space is aligned vertically along the
invisible momentum direction. The invisible momentum
components of the normal vector that defines this tangent
plane are given by the row vectors of the ‘‘restricted’’
Jacobian matrix ð@gi=@xkÞ. The vertical alignment of the
tangent plane implies that at a singularity, the restricted
Jacobian matrix must have a reduced rank:

Rank

�
@gi
@xk

�
sing

< Rank

�
@gi
@xk

�
reg
: (2)

The amount that the rank is reduced is the degree of the
singularity; a wall (cusp) has degree one (two).

Finding the reduced rank condition of an arbitrary ma-
trix is not an easy problem. However, for the special case of
an affine variety, the given set of polynomial equations can
be substituted by another set with the same solution space.
The set of all such equivalent equations is called an ideal,
which is generated by a finite set of polynomials known as
a basis. We focus here on the Gröbner basis, in which
variables are eliminated sequentially as follows:

g1ðx1; x2; x3; . . . ; xnÞ ¼ 0;
g2ðx2; x3; . . . ; xnÞ ¼ 0;

..

.

gNðxN; xNþ1; . . . ; xnÞ ¼ 0:

(3)

The algorithm for finding the Gröbner basis for a general
coupled polynomial system is known [9]. For the processes
of interest, it is tractable to obtain it analytically.

The reduced rank condition implies that one or more row
vectors of the restricted Jacobian are linearly dependent. In
the Gröbner basis, the restricted Jacobian is of upper
triangular form. Therefore, a necessary but not sufficient
condition for linear dependency is that one of the diagonal
components vanishes, resulting in an analytic condition for
the singularity position.

Singularity coordinates.—The next step is to construct
an optimized one-dimensional variable that we call the
singularity coordinate. This is an implicit variable because
the location of the singularity is defined by the reduced
rank condition of the restricted Jacobian matrix, which is
an implicit function of the mass parameters. The singular-
ity coordinate must satisfy the following criteria: (i) it must

be zero at the singularity, (ii) its direction must be perpen-
dicular to the singularity hypersurface in observable phase
space, and (iii) it must be normalized such that every event
can give the same significance.
To see this, we note that the reduced rank condition

implies that one linear combination
P

icið@gi=@xkÞ be-
comes a null vector at the singularity point. The perpen-
dicular direction is determined by ð ~vÞj ¼

P
icið@gi=@qjÞ,

(recall qj are the visible momenta). The singularity coor-

dinate in this direction is maximally efficient for revealing
the singularity structure. To assign an unambiguous value
to each event, the singularity coordinate is scaled so that
events with the same invisible phase space volume around
the nearest singularity have the same value. This requires a
knowledge of the local phase space properties around the
singularity at quadratic order.
As shown in Fig. 2, a local orthonormal coordinate

system around a given reference point can be split into
tangent directions tr, (r ¼ 1; . . . nþm� N) and normal
directions ns, (s ¼ 1; . . . ; N). A general phase space point
near this reference point is labeled by the tangent coordi-
nate. The normal coordinate is determined by a quadratic
function of the tangent coordinate (the second fundamental

form): ns � IIsðtrÞ ¼ Ms
rr0t

rtr
0
, where

IIsðtrÞ ¼ �
�
@gp
@ns

��1 @2gp
@tr@tr0

trtr
0
: (4)

We define ~� � ~v � IIðtrÞ � Mrr0 trtr0 . To find the appropri-
ate scale factor, we need to obtain the phase space volume
in the tangent directions that correspond to invisible mo-
menta. The phase space in the invisible momentum direc-
tions in the diagonalized basis ~tr is given by

a1~t
2
1 þ � � � þ aM~t

2
M ¼ ~�, where M is the number of invis-

ible tangent directions and the eigenvalues ar determine
the shape of the invisible phase space around the singular-
ity. For positive eigenvalues, the ellipsoid-shaped phase

space volume scales as ðVolÞ / ða1a2 . . . aMÞ�1=2 ~�M=2
.

The singularity coordinate � that satisfies all three criteria
is thus given by

� � ða1 . . . aMÞ�1=M ~�: (5)

� is an implicit kinematic variable, since the location of
the zero, the normal direction ~v and the scale factor can be
defined only when mass parameters are given.

FIG. 2 (color online). The scaling behavior near a singularity.
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Simple cascade decay.—Our first example is the simple
cascade decay process shown in Fig. 3 (e.g., neutralino

decay in the MSSM, with Y ¼ ~�0
2, L ¼ ~l, and X ¼ ~�0

1).

The on-shell equations of this system are

x2¼m2
X; ðxþqfÞ2¼m2

L; ðxþqfþqnÞ2¼m2
Y: (6)

mX, mL, and mY are trial masses, x is the invisible particle
momentum, and qn;f are the visible particle momenta.

Taking the z-axis in the direction of the 3-momentum of
ln in the center of mass (CM) frame of the visible particles
ln;f, we have q

c:m:
n;f ¼ ðEc:m:=2; 0; 0;�Ec:m:=2Þ, where Ec:m:

is the CM energy of ln;f. Equation (6) is then

x20 � x21 � x22 � x23 ¼ m2
X;

ðEcm=2þ x0Þ2 � x21 � x22 � ðEc:m:=2þ x3Þ2 ¼ m2
L;

ðEc:m: þ x0Þ2 � x21 � x22 � x23 ¼ m2
Y:

(7)

The Gröbner basis for this system is particularly simple.
With the lexicographic ordering x0 � x3 � x1 � x2,

g1¼2Ec:m:x0þðE2
c:m:þm2

X�m2
YÞ;

g2¼2Ec:m:x3þE2
c:m:þ2m2

L�m2
X�m2

Y;

g3¼E2
c:m:x

2
1þE2

c:m:x
2
2

þ ðE2
c:m:m

2
L�ðm2

Y�m2
LÞðm2

L�m2
XÞÞ:

(8)

The restricted Jacobian (@gi=@xj) is

2Ec:m:

2Ec:m:

2E2
c:m:x1 2E2

c:m:x2

0
@

1
A: (9)

The first two row vectors are zero only when there are soft
singularities, which we do not consider here. The condition
that the third vector vanishes results in x1 ¼ x2 ¼ 0.
Physically, this means that the missing particle momentum
is aligned in the direction of the lepton momentum in the
CM frame. Together with Eq. (7), this results in the follow-
ing condition at the singularity:

E2
c:m: ¼ ðm2

Y �m2
LÞðm2

L �m2
XÞ

m2
L

� ðmðmaxÞ
ll Þ2: (10)

This reproduces the well-known result for the edge of the

invariant mass mll �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqn þ qfÞ2

q
. The tangent directions

here are given by x1;2, and ~v is the Ec:m: direction. The scale

factor can be read off from g3 ¼ 0. The singularity coor-
dinate is given by the well-known quantity� / ððmmax

ll Þ2 �

E2
c:m:Þ=ðmmax

ll Þ2. Our method also shows that no other sin-

gular structures exist for this process.
Double missing particle chain.—For the double missing

particle chain of Fig. 4, we have the relations

x21 ¼ m2
X; x22 ¼ m2

X; ðx1 þ q1Þ2 ¼ m2
Y;

ðx2 þ q2Þ2 ¼ m2
Y; ~x1T þ ~x2T ¼ ~pT;

(11)

where x
�
i ¼ ðxi0; xi1; xi2; xi3Þ denote the momenta of Xi,

q�i ¼ ðqi0; qi1; qi2; qi3Þ are the visible particle momenta for
each chain, and ~pT ¼ ðpT1; pT2Þ is the missing transverse
momentum. We assume mX1 ¼ mX2 ¼ mX and mY1 ¼
mY2 ¼ mY (the generalization to an asymmetric chain is
straightforward). With x10 � x13 � x20 � x21 � x22 �
x23 � x11 � x12, the Gröbner basis takes the form

g1 ¼ q10x10 � q13x13 � q11x11 � q12x12 � C1; (12)

g2 ¼ ðq210 � q213Þx213 � 2q11q13x13x11 � 2q12q13x13x12

� 2C1q13x13 þ ðq210 � q211Þx211 � 2q11q12x11x12

þ ðq210 � q212Þx212 � 2C1q11x11 � 2C1q12x12

þ ðm2
Xq

2
10 � C2

1Þ; (13)

g3 ¼ q20x20 � q23x23 þ q21x11 þ q22x12 � C2; (14)

g4 ¼ x21 þ x11 � pT1; (15)

g5 ¼ x22 þ x12 � pT2; (16)

g6 ¼ ðq220 � q223Þx223 þ 2q21q23x23x11 þ 2q22q23x23x12

� 2C2q23x23 þ ðq220 � q221Þx211 � 2q21q22x11x12

þ ðq220 � q222Þx212 � ð2pT1q
2
20 � 2C2q21Þx11

� ð2pT2q
2
20 � 2C2q22Þx12 þ ð ~p2

T þm2
XÞq220 � C2

2;

(17)

in which C1 ¼ ðm2
Y �m2

X � q1 � q1Þ=2, C2 ¼ ðm2
Y �

m2
X � q2 � q2 þ ~q2T � ~pTÞ. The restricted Jacobian matrix

(@gi=@xj) with respect to the invisible momenta x�1;2 has

the form in

FIG. 3 (color online). The event topology of a simple cascade
decay.

FIG. 4 (color online). The event topology of a double missing
particle chain.
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x10 x13 x20 x21 x22 x23 x11 x12

g1 h h h h

g2 h h h

g3 h h h h

g4 1 1

g5 1 1

g6 h h h

whichh is a nonzero entry that depends on the visible and
invisible momenta, 1 is a constant (nonzero) term, and a
blank space is a zero. The conditions @g1=@x10 ¼ q10 and
@g3=@x20 ¼ q20 correspond to soft singularities. The re-
stricted Jacobian (@gi=@xj) has a reduced rank if

@g2
@x13

¼ 2ðq210 �q213Þx13 � 2ðC1 þ ~q1T � ~x1TÞq13 ¼ 0;

@g6
@x23

¼ 2ðq220 �q223Þx23 � 2ðC2 � ~q2T � ~x1TÞq23 ¼ 0;

det

@g2
@x11

@g2
@x12

@g6
@x11

@g6
@x12

0
@

1
A¼ 0:

(18)

Once the nearest singularity point is identified, we can
determine the singularity coordinate. A numerical analysis
for events with true masses mX ¼ 200 GeV and mY ¼
500 GeV is shown in Fig. 5. The singularity appears at
� ¼ 0 only when the trial masses are equal to the true
masses, providing a proof of concept.

Here we have neglected backgrounds and assumed that
we have identified the event topology correctly. A com-
plete treatment of the backgrounds must be done on a case-
by-case basis and is beyond the scope of this Letter.
However, as the singularity coordinates maximize any
singular features at the true masses, they best discriminate
the signal in the presence of backgrounds, which have

smooth profiles at these points. If the event topology was
misidentified, singular features will not appear for any trial
mass values, indicating that the hypothesis was incorrect.
Further details will be given in [8].
Conclusions.—We have presented a systematic method

for measuring missing particle masses based on phase
space singularity structures that is applicable to any non-
reconstructable process. The approach reproduces well-
known results, such as the end point of the invariant
mass distribution, and provides a means for finding the
singularities for more general processes that can also be
used for determining qualitative event properties. This
method should provide invaluable tools in the search for
new physics at the LHC.
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FIG. 5 (color online). The singularity coordinate distribution
for several choices of trial masses with mX ¼ 200 GeV, mY ¼
500 GeV.
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