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We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic

Reynold’s numbers in the ‘‘inertial-inductive range’’ of magnetohydrodynamic (MHD) turbulence, where

velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total

energy and cross helicity—or, equivalently, fluxes of Elsässer energies—are dominated by the contribu-

tions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic

stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only

between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical

studies that have claimed conversion nonlocally between disparate scales. We present supporting data

from a 10243 simulation of forced MHD turbulence.
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Magnetohydrodynamic (MHD) turbulence is pervasive
in astrophysical systems. Turbulent plasma fluctuations
commonly possess power-law spectra over vast ranges of
scales where both viscosity and resistivity are negligible.
We call such ranges ‘‘inertial-inductive’’ since nonlinear
dynamics (inertia or Lorentz force and convection or in-
duction) dominates the physics at these scales. MHD
plasma turbulence, with power-law scaling of both spectra
and structure functions in the inertial-inductive range,
plays a central role in star formation, accretion of matter
near active galactic nuclei, solar physics, and the genera-
tion of large-scale magnetic fields in such systems. There
are several competing theories for the spectrum of strong
MHD turbulence, including those of Iroshnikov-Kraichnan
[1,2], Goldreich-Sridhar [3], and Boldyrev [4]. All of these
theories assume scale locality of the nonlinear cascade,
following the classical ideas of Richardson, Kolmogorov,
and Onsager for turbulence in neutral fluids. Scale locality
is fundamental to justify the universality of the postulated
turbulent scaling laws.

A consensus has been forming in recent years, however,
that cascades in MHD turbulence are nonlocal processes
[5–8]. Schekochihin et al. [5] emphasized the nonlocal
nature of the interactions between the velocity and mag-
netic fields as a hallmark of isotropic MHD turbulence.
This conclusion was reaffirmed in several subsequent stud-
ies, most categorically by Yousef et al. [8] who claimed
that there is a direct exchange of energy between motions
at the largest scales in the system, at which the flow is
being stirred, and the magnetic field at arbitrarily small
scales in the inductive range. A more refined analysis of the
locality of interactions was carried out by Alexakis et al.
[6] who concluded, based on direct numerical simulations
(DNS) of MHD turbulence, that the magnetic field gains
energy at scales ‘ in the inertial range from the straining
motions at all larger scales> ‘ and especially from the
forcing scale L � ‘. Carati et al. [7] subsequently carried

out DNS at a higher resolution, arriving at conclusions
similar to [6] and, furthermore, claiming that there is non-
local transfer of Elsässer energies as well. Related ideas
have surfaced in the accretion disk community [9,10].
In this Letter, we address the scale locality of MHD

cascades by a direct analytical study of the equations:

@tuþ ðu � rÞu ¼ �rpþ ðb � rÞbþ �r2uþ f;

@tbþ ðu � rÞb ¼ ðb � rÞuþ �r2b (1)

forr � u ¼ r � b ¼ 0. Here b ¼ B=
ffiffiffiffiffiffiffiffiffiffi
4��

p
is the magnetic

field in Alfvén velocity units and p is total pressure (in-
cluding magnetic pressure). Our main conclusion is that,
under very weak scaling assumptions, MHD turbulence
has scale-locality properties only a little less robust than
those of hydrodynamic turbulence. We will support our
analysis with a pseudospectral DNS at 10243 resolution
with phase-shift dealiazing. For our numerical work, we
choose viscosity � and resistivity � to be both equal to
1:1� 10�4. The external stirring force is a Taylor-Green
flow f � f0½sinðkfxÞ cosðkfyÞ cosðkfzÞx̂� cosðkfxÞ�
sinðkfyÞ cosðkfzÞŷ� applied at modes kf ¼ 2 with an am-

plitude f0 ¼ 0:25. The Reynold’s number based on the

Taylor scale �u ¼ 2�
ffiffiffiffiffiffi
Eu

p
=½Rdkk2EuðkÞ�1=2 is Re�u

¼
urms�u=� ¼ 909.
Our proof of local cascade of invariants in MHD turbu-

lence is very similar to that given for hydrodynamic turbu-
lence in [11–13]. We employ the spatial coarse-graining
approach, commonly used as a modeling tool in the large-
eddy simulation (LES) community [14,15]. Coarse-
grained fields are defined by �f‘ðxÞ ¼

R
drG‘ðrÞfðxþ rÞ,

with a filtering kernel G‘ðrÞ ¼ ‘�3Gðr=‘Þ, which is suffi-
ciently smooth and decays sufficiently rapidly for large r
[11]. Coarse-grainedMHD equations can then bewritten to
describe �u‘ and �b‘, along with corresponding budgets for
the quadratic invariants—energy, cross helicity, and mag-
netic helicity—at scales � ‘ (see [16]). For example, the
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time derivative of large-scale energy ð1=2Þ½j �u‘j2 þ j �b‘j2�,
in addition to space-transport terms, contains also as sink
terms the kinetic energy flux ��u

‘ ¼ r �u‘: �‘ and the

magnetic energy flux ��b
‘ ¼ �|‘ � "‘, with �|‘ ¼ r� �b‘.

Here �‘;ij ¼ �‘ðui; ujÞ � �‘ðbi; bjÞ is the total stress gen-

erated by scales< ‘, both the Reynold’s stress and the
Maxwell stress, and "‘;i ¼ �ijk�‘ðuj; bkÞ is the electromo-

tive force generated by scales< ‘. We employ the notation

�‘ðf; gÞ ¼ ðfgÞ‘ � �f‘ �g‘ (2)

for the ‘‘central moments’’ of any fields fðxÞ, gðxÞ [14].
There are two facts crucial for scale locality of the

energy fluxes �u;b
‘ . First, all of the filtered gradient fields

and the central moments can be expressed in terms of
increments. In general, for any fields,

r �f‘��fð‘Þ=‘; �‘ðf;gÞ��fð‘Þ�gð‘Þ; f0‘���fð‘Þ;
(3)

where increments are �fðx; rÞ ¼ fðxþ rÞ � fðxÞ,
�fð‘Þ ¼ supr<‘j�fðrÞj, and f0‘ ¼ f� �f‘ is the fine-scale

(high-pass-filtered) field. For details, see [11]. The second
crucial ingredient for locality is the scaling properties of
the increments of velocity and magnetic field:

�uð‘Þ ’ ‘	u; �bð‘Þ ’ ‘	b ; 0<	u;b < 1; (4)

where these relations may be assumed to hold either point-
wise, with 	 the local Hölder exponent, or in the sense of

pth-order means, k�fkp ¼ hj�fð‘Þjpi1=p, with 	 equal to

1=p times the scaling exponent 
p of the pth-order struc-

ture function. As long as 0<	u;b < 1, then (either locally

or in the Lp-mean sense) the fluxes�u;b
‘ are determined by

modes all at scales comparable to ‘ [11]. For example, the
contribution to any increment �fð‘Þ from scales � � ‘ is
represented by � �f�ð‘Þ. Since the low-pass-filtered field �f�
is smooth, its increment may be estimated by Taylor ex-
pansion and (3) and (4) as

� �f�ð‘Þ ’ ‘ � ðr �f�Þ ’ ‘�	�1 ’ ‘	ð‘=�Þ1�	;

and this is negligible for � � ‘ as long as 	< 1. On the
other hand, the contribution to any increment �fð‘Þ from
scales �	‘ is represented by �f0�ð‘Þ. Since f0���ð�fÞ�
ð�Þ (even without taking any difference), (4) implies that

�f0�ð‘Þ ’ �	 ’ ‘	ð�=‘Þ	;
and this is negligible for � 
 ‘ as long as 	> 0.

It is important to emphasize that the scaling laws like (4)
used in our proof are obtained in all theories of strong
MHD turbulence. The Iroshnikov-Kraichnan theory pre-
dicts that 	u ¼ 	b ¼ 1=4. The Goldreich-Sridhar theory
predicts distinct scaling for increments with displacements
in different directions relative to a background field b0,

with �uð‘kÞ � �bð‘kÞ � ‘1=2k for displacements in the

field-parallel direction and �uð‘?Þ � �bð‘?Þ � ‘1=3? for

displacements in the perpendicular direction. Such distinc-

tions make no difference to our proof, so long as both
exponents 	k, 	? lie between 0 and 1. Similarly, our proof

is fully compatible with possible intermittency corrections
to scaling exponents. Although the precise scaling of
strong MHD turbulence is an open issue, numerical simu-
lations [17,18] and natural observations [19,20] support the
validity of the weak condition (4) for sufficiently high
kinetic and magnetic Reynold’s numbers.
Our arguments also imply the scale locality of cascades

of the Elsässer energies ð1=2Þjz�j2, with z� ¼ u b. This
may be seen by considering the time derivative of the
large-scale energy densities ð1=2Þj�z�‘ j2, for which the

sink terms are the fluxes ���
‘ ¼ r�z�‘ :�‘ðz; z�Þ ’

�zð‘Þ½�z�ð‘Þ�2=‘. Since these fluxes are expressed in
terms of increments, they are scale local under the weak
condition (4). This may also be seen from an alternative
expression for the Elsässer energy fluxes which follow
from the Politano-Pouquet relations [21], ��

‘ ¼
�ð3=4‘Þh‘̂ � �zð‘Þj�z�ð‘Þj2iang, where h�iang denotes av-
erage over the displacement directions ‘̂. The scale locality
of cascades of the Elsässer energies is particularly impor-
tant since the foremost phenomenologies of strong MHD
turbulence [1–4] are based on the picture of counterpropa-
gating Alfvén wave packets expressed by the Elsässer
variables z�. In terms of these variables, the scale-locality
properties of MHD turbulence are essentially the same as
those of hydrodynamic turbulence. Scale locality of the
cascades of Elsässer energies implies scale locality of the
flux of cross helicity �u‘ � �b‘ ¼ ð1=4Þj�zþ‘ j2 � ð1=4Þj�z�‘ j2
[as well as scale locality of flux of total energy
ð1=4Þj�zþ‘ j2 þ ð1=4Þj�z�‘ j2].
One cascade in MHD turbulence which may be essen-

tially different is that of magnetic helicity. The time de-
rivative of large-scale helicity density �b‘ � �a‘ [where
�a‘ ¼ ðcurlÞ�1 �b‘], in addition to space-transport terms,
contains as a sink term the magnetic-helicity flux ��h

‘ ¼
2 �b‘ � "‘. Although "‘ ’ �uð‘Þ�bð‘Þ, the coarse-grained
magnetic field �b‘ will generally be dominated by modes
at the forcing scale L. Thus, magnetic-helicity flux may
possibly be dominated by nonlocal triads, with one mode at
the large scale L. Similar issues arise for magnetic line
stretching. The time derivative of large-scale kinetic en-
ergy ð1=2Þj �u‘j2, in addition to space-transport terms and
the sink term ��u

‘ , contains � �b>
‘
�S‘
�b‘ where the matrix

�S‘ ¼ ð1=2Þ½ðr �u‘Þ þ ðr �u‘Þ>� is the strain from scales> ‘.
Likewise, the time derivative of large-scale magnetic en-
ergy ð1=2Þj �b‘j2, in addition to space-transport terms and
the sink term ��b

‘ , contains þ �b>
‘
�S‘
�b‘. Thus, this term

represents conversion between large-scale kinetic and
magnetic energy by stretching of coarse-grained field lines.
Just as for magnetic-helicity flux, this is a ‘‘hybrid’’ quan-
tity with both energy-range and inertial-range components.
Although �S‘ � �uð‘Þ=‘, the coarse-grained magnetic field
�b‘ can be dominated by modes at scale L. Thus, we cannot
conclude that this quantity is dominated by local triads
with all modes at scale ‘.
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Indeed, much of the recent discussion about apparent
nonlocality in MHD turbulence has revolved about this
conversion term. One of the startling claims that has been
made in recent numerical studies [6–8] is that conversion
between kinetic and magnetic energies proceeds very non-
locally, with magnetic modes at scale ‘ gaining energy
equally from all velocity modes at scales> ‘ or even
predominately from scale L � ‘. In order to examine
this claim, we must refine our methodology to consider
band-pass energies. Following [12], we define pointwise
the kinetic and magnetic energy densities in the interval of

scales [ �‘, ~‘] for ~‘ > �‘, as

eu½ �‘;~‘� ¼ ð1=2Þ~�ð �ui; �uiÞ; eb½ �‘;~‘� ¼ ð1=2Þ~�ð �bi; �biÞ:

Note that ð�Þ now denotes scale �‘ andfð�Þ scale ~‘. Their time
derivatives are easily calculated to be

@te
u
½ �‘;~‘� ¼ �ð g�bi �bj �Sij � ~�bi

~�bj
~�SijÞ þ ½ ~��u � ðg��uÞ� þ � � � ;

(5)

@te
b
½ �‘;~‘� ¼ þð g�bi �bj �Sij � ~�bi

~�bj
~�SijÞ þ ½ ~��b � ðg��bÞ� þ � � � ;

(6)

where � � � denotes total divergence terms that correspond

to space transport. As before, ��u ¼ � �S: �� and ��b ¼ ��| �
�", and note that the double-filtering length scale ~�‘ � ~‘ for
~‘ � �‘. It is ‘‘obvious’’ from these equations that the
magnetic stretching terms transfer energy between velocity
and magnetic field modes only within the same band of

length scales [ �‘, ~‘]. Clearly, whatever energy is lost or
gained from one field by line stretching reappears in or
disappears from the other field at the same scale.
Noncolliding Alfvén waves are an example of such non-
local triadic exchange which is mediated by a uniform
magnetic field at the largest scales, but which does not
contribute to energy transfer across scales.

Our conclusion above requires some caution, however.
A counterexample is the Batchelor (viscous-inductive)
range that occurs in MHD turbulence with a large magnetic
Prandtl number Prm ¼ �=� � 1 [22]. This range consists
of length scales ‘� � ‘ � ‘� far below the inertial-

inductive range L � ‘ � ‘�, with ‘� and ‘� the viscous

and resistive length scales, respectively. In the Batchelor
range, the energy is transferred directly from the velocity
modes at the viscous scale ‘� into the magnetic-field
modes at scales ‘ 
 ‘�. To see that this follows from
our Eqs. (5) and (6), we observe that the velocity gradient
in the Batchelor range is almost spatially constant and
r �u‘ � ru for all ‘ < ‘�. It is thus easy to see that the
stretching term in (5) equals�Sij~�ð �bi; �bjÞ, whereas the two
flux terms become Sij½ g��ðbi; bjÞ � ~��ðbi; bjÞ�. (Note that the
stress in this range is almost entirely Maxwellian.) These
terms exactly cancel by the Germano identity [14,15].
Thus, the line-stretching term acts as an effective source

to magnetic energy eb½ �‘;~‘�, supplied by the flux of kinetic

energy directly from the viscous scale ‘�.
The moral of this example is that the energy fluxes also

contain line-stretching effects which must be considered.
Nevertheless, our conclusion is not altered that, in an
inertial-inductive range, energy conversion by line stretch-
ing is between velocity and magnetic field modes at similar
scales. The key point here is the scale locality of the fluxes,
which has already been established. Because the fluxes
only involve modes at comparable scales, they cannot
transfer energy from very distant scales into scale ‘ within
an inertial-inductive range. This is not true in the Batchelor
range since the velocity field is very smooth there (	u ¼
1), violating the condition (4) for scale locality of energy
flux in the infrared.
The studies [6–8] considered more traditional spectral

transfers such as TubðK;PÞ ¼ hb½P�ðb � rÞu½K�i and

TbuðK;PÞ ¼ hu½P�ðb � rÞb½K�i, where u½K� and b½K� are
spectrally band-passed fields for some interval of wave
numbers around K. Since TubðK;PÞ ¼ �TbuðP;KÞ, these
can be interpreted (with some caution) as energy transfer
from the velocity field in band [K] to the magnetic field in
band [P]. Is it possible for the dominant transfers to be
between distant bands in an inertial-inductive range? The
answer is no, if [K] is a dyadic (octave) wave number band
[K=2, K]. It is necessary to use such bands, of equal width
on a logarithmic scale, in order to permit simultaneous
localization of modes in Fourier and physical space (within
the limits of the uncertainty principle). We note that this is
crucial for phenomenological arguments based upon
Alfvénic wave packets with both size and wave number
specified. The conditions which replace (4) are, for a ¼ u,
b with 0<	a

p < 1

hja½K�jpi1=p ’ K�	a
p ; hjra½K�jpi1=p ’ K1�	a

p : (7)

See [13]. If P< K=2, then wave number conservation

implies that TubðK;PÞ ¼ �hu½K�ðb½K=2�P;KþP� � rÞb½P�i.
Using the Hölder inequality, this expression is bounded

by hjrb½P�j3i1=3hju½K�j3i1=3hjb½K=2�P;KþP�j3i1=3. By (7)

jTubðK;PÞj 	 ðconstÞP1�	b
3K�	u

3
�	b

3 :

Since	b
3 < 1, such transfers for P 
 K are negligible. For

P> 2K, TubðK;PÞ ¼ hb½P�ðb½P=2�K;PþK� � rÞu½K�i, so
Hölder inequality and (7) imply

jTubðK;PÞj 	 ðconstÞK1�	u
3P�2	b

3 :

Since 	b
3 > 0, transfers for P � K are also negligible.

To test these conclusions numerically, we analyze a time
snapshot of our 10243 MHD simulation in the statistical
steady state. The kinetic and magnetic energy spectra of
the flow have a reasonable power-law scaling until around
k ¼ 80 (inset to Fig. 1). The transfers plotted in Fig. 1
exhibit off-diagonal (P � K) decay close to our rigorous
upper bounds with exponent 	b

3 ¼: 1=3. However, the

value of this exponent determined from our numerical
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data (not shown) is closer to 	b
3 ¼ 1=4, consistent with the

predictions of [1,2,4]. For this value, we obtain rigorous
upper bounds OðP0:75Þ for P 
 K and OðP�0:5Þ for P �
K, which are also close to the observed scaling.

How are our exact results to be reconciled with the
recent numerical studies that reach the opposite conclu-
sion? A full discussion is given in our longer work [16], but
we make a few remarks here. References [5,8] discussed
simulations at lower resolution than ours without carrying
out a systematic scaling analysis. As for [7], they had an
anomalously strong strain at the forcing scale L, which can
dominate over the local strain at scales ‘ & L in an inertial-
inductive range of limited extent. We also observe this
effect over a finite range if we permit such an ‘‘energy
spike’’ at the forcing scale, but it becomes weaker as the
amplitude of the spike decreases or as the length of the
power-law scaling range increases. Finally, [6] appealed to
spectral transfers to justify their claim that the magnetic
field at scales ‘ in the inertial-inductive range receives
energy from straining motions at all larger scales> ‘,
especially from scale L � ‘. However, their DNS study
used Fourier bands of linear size [K � 1, K], which corre-
spond to plane-wave modes which are nonlocalized in
space, unlike the Alfvén wave packets employed in phe-
nomenological arguments. Such bands do not properly
account for the exponentially growing number of local
triads at higher wave numbers, whose aggregate contribu-
tion dominates transfers defined with logarithmic bands
[13]. Figure 2 reproduces the numerical result of Fig. 8 of
[6] (dashed line), together with our own DNS results using
log bands. Clearly, the nonlocal effects observed by [6]
represent miniscule amounts of energy transfer compared
with the net contribution of local triads and become even

smaller as the scale range increases. In short, the numerical
results in [5–8] do not support any asymptotic nonlocality
of energy cascade in MHD turbulence.
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FIG. 1 (color online). The transfers jh@ju½P�i B½200�
i Bjij (�) and

jh@ju½4�i B½P�
i Bjij (�). Straight lines have �2=3 slopes and extend

over the fitting range, which yields a decay rate of�P0:68 for (�)
and �P�0:58 for (�). Inset shows velocity (solid line) and
magnetic (dashed-dotted line) energy spectra, which scale close
to Eu � Eb � k�1:61 over k 2 ½5; 80�.
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