
Drag Forces in Classical Fields

Vincent Démery and David S. Dean

Université de Toulouse, UPS, Laboratoire de Physique Théorique (IRSAMC), CNRS UMR5152, F-31062 Toulouse, France
(Received 20 December 2009; revised manuscript received 2 February 2010; published 23 February 2010)

Inclusions, or defects, moving at constant velocity through free classical fields are shown to be subject

to a drag force which depends on the field dynamics and the coupling of the inclusion to the field. The

results are used to predict the drag exerted on inclusions, such as proteins, in lipid membranes due to their

interaction with height and composition fluctuations. The force, measured in Monte Carlo simulations, on

a pointlike magnetic field moving through an Ising ferromagnet is also well explained by these results.
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In quantum field theory forces between particles are
induced via their coupling to a quantum field [1]. The
same phenomena arises for fields driven by thermal fluc-
tuations, for example, interactions between inclusions in
fluctuating membranes [2]. Similarly the Casimir force,
both quantum and thermal, arises due to the imposition
of boundary conditions on quantum or thermal fields [3].
Casimir discovered his force in the quantum context but
Fisher and de Gennes [4] showed that a classical version of
this effect should be expected for fluctuating thermal fields,
such as those for the order parameter of systems near a
critical point. This critical Casimir effect has only recently
been measured [5] and the technical progress involved in
this experiment may well open up the possibility of ex-
ploring other aspects of the critical Casimir effect, notably
dynamical phenomena. In all of the above, the effect of the
field is manifested by the interaction induced between two
or more particles or surfaces in the field. However, the
presence of the field can also be seen by looking at the
force exerted on a particle when it is not at rest. For
instance, electrons moving in materials induce a local
polarization known as the polaron [6] which modifies their
dynamics. A frictional Casimir force is also induced by the
uniform motion of a conductor in a volume of blackbody
radiation which is in equilibrium in the rest frame of a
cavity containing the radiation [7].

In this Letter we show that for classical fields, in a
laboratory rest frame, a drag force is present on inclusions
linearly coupled to the field, and which move at constant
velocity. The underlying physics is caused by a polaronlike
phenomena (see Fig. 1) which we generalize to a range of
statistical field models arising in the study of soft con-
densed matter systems. A key point in this analysis is that
we examine the effect of the dynamical models commonly
used to study soft condensed matter systems on the drag
forces on inclusions.

As a concrete example of the class of problems we will
address we start by studying drag forces in the Ising
ferromagnet model on a d dimensional cubic lattice with
Hamiltonian

H ¼ �J
X
ði;jÞ

SiSj þ hSi0 : (1)

Here J > 0 is a ferromagnetic coupling between nearest
neighbor spins on a square lattice of spacing a, and h a
magnetic field at the position of an inclusion i0 which
moves in the direction z with a velocity v, so i0ðzÞ ¼
vt=a (where we take the integer part). The system evolves
in the following manner, the underlying unit of time is a
Monte Carlo sweep where N (the system size) randomly
chosen spins are examined and flipped or not according to
the dynamical rules used: (i) dynamics not conserving the
total magnetization—Glauber dynamics—a single spin is
chosen and is flipped with probability pf ¼ 1=½1þ
expð��HÞ�, where � is the inverse temperature and �H
the energy change associated with the spin flip; (ii) a form
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FIG. 1 (color online). Contour plot of the magnetization profile
(polaron) for the 2D Ising model about a local magnetic field at a
single point moving with velocity v. (high temperature phase:
� ¼ 1, J ¼ 0:4, h ¼ 6:66).
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of Kawasaki dynamics conserving the total magnetization;
here, two spins of opposing sign are randomly selected and
flipped with the probability pf. After � ¼ a=v units of

time the inclusion is moved one step in the z direction. The
instantaneous force is defined as fðtÞ ¼ ��EðtÞ=a ¼
�h½Si0þ1ðtÞ � Si0�1ðtÞ�=2a (the energy change �E being

computed from the symmetric discrete derivative on the
lattice).

Shown in Figs. 2(a) and 2(b) are the steady state values
obtained for the average value of the force �fðvÞ, for
Glauber and Kawasaki dynamics, respectively, as a func-
tion of the velocity v for the one-dimensional Ising model
with parameters, � ¼ 1, J ¼ 1, and h ¼ 10. Similar re-
sults are found in two dimensions. All numerical results
have similar characteristics, the force is always in the
opposite direction to the direction of movement, so it is a
friction, the force is linear for small v, and for large v the
force decays as 1=v.

Figure 1 is a plot of the average magnetization around
the inclusion seen from its rest frame in the steady state
regime with Glauber dynamics. For zero velocity we see
that the magnetization profile is spherically symmetric and
there is no net force, but as the velocity is increased the
magnetization profile is distorted and takes a different form
ahead of and behind the inclusion. As v increases the

smearing out of the magnetization profile is increased,
but the amplitude of the deformation diminishes. These
results indicate that it is the magnitude of the deformation
of the local field by the inclusion along with the asymmetry
induced by the particle motion that induces the force. Once
the velocity becomes too large the system does not have
time to react to the presence of the inclusion and the
frictional force weakens, this shear thinning like cross
over should be quite generic. These results are qualitatively
similar to those of [8] for the interaction of a magnetic
force microscope tip passing over a magnetic sample, with
dipolar interactions between the tip and the sample, and
with spin dynamics described by the Landau-Lifschitz-
Gilbert equation.
To understand these results we consider the general

overdamped dynamics for a scalar field �. We denote
positions in space by r ¼ ðx; zÞ where the coordinate z is
in the direction of the motion. We write the Hamiltonian
density H as two parts, the first a bulk term H 0½�� and
the second the energy due to the inclusion �ðxÞ�ðz�
vtÞH tr½��. We thus assume that the interaction between
the inclusion and the field is localized about the point (0,
vt). The energy of the system is thus

H ¼
Z
ðH 0½�� þ �ðxÞ�ðz� ZÞH tr½��Þdr; (2)

where Z ¼ vt is the inclusion’s position in the direction z.
The instantaneous force acting on the inclusion is simply
given by

f ¼ �@H

@Z
¼ �@H trð�ð0; ZÞÞ

@Z
; (3)

and when the derivative is not continuous we implicitly
take its average value about the particle position (corre-
sponding to the symmetric discrete derivative used in the
Ising model simulations). We now take a general over-
damped dynamics for the evolution of the field �

@�ðrÞ
@t

¼ �R
�H

��ðrÞ þ �ðr; tÞ; (4)

where R is a dynamical operator defining the underlying
overdamped dynamics. For instance Rðr; r0Þ ¼
Rðr� r0Þ ¼ �ðr� r0Þ for model A dynamics (noncon-
served order parameter) and Rðr� r0Þ ¼ �r2�ðr� r0Þ
for model B dynamics (conserved order parameter). The
noise term is taken to be Gaussian white noise in time and
with spatial correlations that respect detailed balance, i.e.,
h�ðr; tÞ�ðr0; t0Þi ¼ 2T�ðt� t0ÞRðr� r0Þ.
Consider the case of free scalar fields with a linear

coupling between the inclusion and the field, i.e.,

H 0 ¼ 1

2
�ðrÞ��ðrÞ; H tr ¼ �K�ðrÞ; (5)

where both � and K are linear operators which, for the
purposes and applications here, we will assume to be self-
adjoint. Working in the coordinate system comoving with
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FIG. 2. Dashed lines: average drag force �f in the 1D Ising
model as a function of v for Glauber (a) and Kawasaki (b). Solid
lines are the fits of model A (a) and model B (b) dynamics for the
Gaussian ferromagnet.
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the inclusion, the evolution equation for average value of
the field takes the form

@ ��ðrÞ
@t

� v
@ ��ðrÞ
@z

¼ �R� ��ðrÞ þ RKðrÞ: (6)

In the steady state we can neglect the time derivative in the
above and solve the resulting equation by Fourier trans-
forming [9] (where ~gðkÞ ¼ R

dx expð�ik � xÞgðxÞ) to ob-

tain

~�ðkÞ ¼ ~RðkÞ ~KðkÞ
~�ðkÞ ~RðkÞ � ikzv

: (7)

A key point of Eq. (7) is that when v � 0 the average
magnetization depends on the dynamical operator R, it is
only when v ¼ 0 that �� takes its equilibrium value. Using
this we find the average force to be

�fðvÞ ¼ i

ð2�Þd
Z

dk
kz ~RðkÞ ~K2ðkÞ

~�ðkÞ ~RðkÞ � ikzv
; (8)

where d denotes the spatial dimension. The force thus
depends on the particular form of the dynamics via R as
well as the static quantities � and K. For small velocities
we can write this result in terms of an effective friction
coefficient �f ¼ ��v where

� ¼ 1

ð2�Þdd
Z

dk
k2 ~K2ðkÞ
~�2ðkÞ ~RðkÞ (9)

with k ¼ jkj and we have assumed that the operators�, K,
and R are rotationally as well as translationally invariant.
For large velocities we find that

�fðvÞ ¼ � 1

v

1

ð2�Þd
Z

dk ~RðkÞ ~K2ðkÞ: (10)

The limiting forms for the average force for small and large
velocities thus take a universal form as long as the integrals
in Eqs. (9) and (10) exist. These integrals can be regular-
ized at large k by an ultraviolet cutoff. However if the
insertion has a finite size, then we can approximate this by
replacing the delta function in the above computation by a
Gaussian profile of width a corresponding to the insertion

size. This gives ~Kðk; aÞ ¼ ~Kðk; 0Þ expð� k2a2

2 Þ, but this sim-

ply sets another cutoff kmax � 2�=a.
To see what the generic form of the induced drag is we

introduce a time scale � for the dynamics writing, on

dimensional grounds, ~R ~� ¼ a�þ�
0 k�þ�=�, and where for

simplicity (however, see the discussion later) we assume
that a0 ¼ a is the cutoff of the field theory as well as the

inclusion size. We also write ~� ¼ 	a��d
0 k� and ~K ¼

	0a
0 k

. A critical dimension dc ¼ 2�þ �� 2
� 2 is

found such that if d > dc, and we assume that the friction is

dominated by the ultraviolet divergence, we find ��
	02
	 �=a20. However, if d < dc, but there is a mass term m

which regularizes the theory at the infrared level then we

find �� 	02
	 �ð�=a0Þdc�d=a20, where � ¼ 1=m is the corre-

lation length of the field. Hence when d < dc the typical
friction can be expected to be orders of magnitude greater
than that for systems such that d > dc if the correlation
length is significantly larger than the inclusion size. When
d < dc, but the system is critical, i.e., m ¼ 0 (correspond-
ing to the Gaussian approximation for continuous phase
transitions such as the paraferromagnetic transition or
critical demixing in lipid bilayers) the integral is infrared
regularized at kmin � 2�=L where L is the linear dimen-

sion of the system and we find �� 	02
	 �ðL=a0Þdc�d=a20.

Note that this critical behavior can even be present when
the free field theory is not critical (m � 0); in this case
dc ¼ �� 2
� 2. This strange situation can occur when
the long distance modes of the theory are weakly damped
(� large for k � 1) or when the field coupling to the
inclusion position is long range (nonlocal 
< 0).
Critical behavior can also be seen in the expression
Eq. (8) at small v. If �þ � > 1, which is the case for the
examples given in this Letter, and d < dc we find that
�fðvÞ � v1þðd�dc=�þ��1Þ.
Gaussian approximation to the Ising ferromagnet.—To

understand the numerical results on the Ising model, we

take, in the disordered phase, the Gaussian model ~� ¼
k2 þm2. The coupling to the inclusion is linear so ~K ¼ h.
For Glauber dynamics we take the model A dynamics ~R ¼
1 and for Kawasaki dynamics we take model B with ~R ¼
k2. When m ¼ 0, dc ¼ 2 for model A and dc ¼ 4 for
model B. Shown in Figs. 2(a) and 2(b) are the simulation
results for the 1D Ising model with Glauber and Kawasaki
dynamics fitted with the formula Eq. (8) using model A and
B dynamics for the Gaussian model, we see that the fits are
excellent in both cases.
Drag in lipid membranes.—Saffmann and Delbrück

(SD) [10] computed the diffusion coefficient for cylindrical
inclusions in membranes where the membrane is treated as
a continuous medium. This was done by computing the
drag by taking into account the coupling of the 2D hydro-
dynamic field of the membrane to that of the external
medium using the nonlinear Navier-Stokes equations.
The diffusion constant is then obtained via the Stokes-
Einstein relation and is found to depend on the protein
radius a as D� lnðaÞ. However, a recent experimental
investigation [11] found that the diffusion constant behaves
as D� 1=a. Several factors can change the dependence of
the diffusion constant on a, for instance with the same
hydrodynamical model frictional coupling of the mem-
brane to a solid surface leads to a behavior D� 1=a2

[12]. Deviations from the SD formula have also been
attributed to modifications of membrane thickness, due to
hydrophobic mismatch, [13] and also the modification of
membrane curvature [14] caused by the protein.
In the spirit of these latter approaches, first consider the

case where the parameter � corresponds to the height of
the membrane. In the Monge gauge, for small fluctuations,
~�ðkÞ ¼ �k4 þ 
k2 where � is the bending rigidity and
 is
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the membrane tension [15]. A simple model for the cou-
pling between a protein and a membrane is a linear cou-
pling between the membrane curvature and the protein (a
protein favors a positive of negative curvature of the mem-
brane), this means that ~K ¼ hk2. The dynamics of mem-
brane height fluctuations are dominated by hydrodynamic
interactions which can be shown to lead to a nonlocal
dynamical operator ~R ¼ 1=4�k, where � is the viscosity
of the surrounding medium [16].

To model drag in membranes we need to know how the
magnitude of the coupling K depends on the size of the
insertion a. To find the dependence of K on a we assume
that the energy induced by the inclusion has the form of a
line tension for small a, that is we impose

� ¼ � 1

2ð2�Þd
Z

dk
~K2ðkÞ
�ðkÞ ¼ 2�a�; (11)

where � is the line tension. We set ~K ¼ k
h and assume
that the integral is dominated either by an ultraviolet
divergence, or when this is not present by an infrared
divergence regulated by kmin ¼ m ¼ 1=�, yielding,

h2 � adþ2
��þ1 for dþ 2
� � > 0 (12)

h2 � �dþ2
��a for dþ 2
� � < 0 (13)

h2 � a= ln

�
�

a

�
for dþ 2
� � ¼ 0: (14)

Using this result to compute the friction for curvature
coupling to membrane height fluctuations we find ��
a2. This means that the frictional force is relatively weak,
but if it were dominant one would estimate, via the Stokes-
Einstein relation, that the diffusion constant would scale as
D ¼ kBT=�� 1=a2. Protein coupling to local lipid com-
position (either chemical or order) can induce interactions
between proteins [17]. Let us take � to be either the local
order parameter specifying the local phase (solid, liquid,
gel) for single lipid membranes or the local lipid compo-
sition for membranes composed of lipid mixtures [18], and
assume it couples linearly to the protein position; i.e., ~K ¼
h is constant. The experiments of [11] on the diffusion
constant of small peptides were carried out in lipid mem-
branes composed essentially of a single lipid type SOPC,
the order parameter coupled to the protein has no reason to
be conserved and so we assume dynamics of model A type.
Applying our computations for the magnitude of h along
with the dynamical result for the friction Eq. (9) we find
�� a. Thus for small insertions this drag force is expected
to be larger that the height fluctuation induced force and if
this drag dominates we obtain the behavior D� 1=a – the
scaling found in [11]. It is thus possible that, for small
membrane inclusions, the dominant drag force is due to in-
teraction with an order parameter of the surrounding lipids.

We have shown how inclusions moving at constant
velocity in classical fields experience a drag force. This
drag force is generated by a polaronlike perturbation of the
surrounding field, at large velocity the polaron is weakened

as the field cannot react sufficiently quickly to the inclu-
sion. The results given here are for free fields, but a rich
phenomenology arises from a relatively straightforward
analysis. The wealth of the theory comes in part from the
range of field theories that describe soft-matter systems
and from the range of dynamical models that are present.
There are clearly a wide range of directions for further
study, including (i) the effect of interacting fields, (ii) ex-
tensions to more realistic dynamics and (iii) the possibility
of observing the drag behavior predicted here in experi-
ments. For example, this phenomena could possibly be
studied using optical tweezers to pull an inclusion, such
as a colloid, through a binary fluid mixture, in particular, at
its critical point. It would also be interesting to see how
protein coupling to local membrane composition affects
the diffusion constant for proteins in multicomponent
membranes.
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