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We discuss the problem of the separation of total correlations in a given quantum state into

entanglement, dissonance, and classical correlations using the concept of relative entropy as a distance

measure of correlations. This allows us to put all correlations on an equal footing. Entanglement and

dissonance, whose definition is introduced here, jointly belong to what is known as quantum discord. Our

methods are completely applicable for multipartite systems of arbitrary dimensions. We investigate

additivity relations between different correlations and show that dissonance may be present in pure

multipartite states.
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Introduction.—Quantum systems are correlated in ways
inaccessible to classical objects. A distinctive quantum
feature of correlations is entanglement [1–3]. Entangled
states are nonclassical as they cannot be prepared with the
help of local operations and classical communication
(LOCC) [4]. However, it is not the only aspect of non-
classicality of correlations due to the nature of operations
allowed in the framework of LOCC. To illustrate this, one
can compare a classical bit with a quantum bit; in the case
of full knowledge about a classical bit, it is completely
described by one of two locally distinguishable states,
and the only allowed operations on the classical bit are to
keep its value or flip it. To the contrary, quantum opera-
tions can prepare indistinguishable pure states of a quan-
tum bit. Such operations and classical communication can
lead to separable states (those which can be prepared via
LOCC) which are mixtures of locally indistinguishable
states. These states are nonclassical in the sense that they
cannot be prepared using classical operations on classical
bits.

Recent measures of nonclassical correlations are moti-
vated by different notions of classicality and operational
means to quantify nonclassicality [5–9]. Quantum discord
has received much attention in studies involving thermo-
dynamics and correlations [10–12], positivity of dynamics
[13,14], quantum computation [15–18], broadcasting of
quantum states [19,20], dynamics of discord [21–23], and
volume of discord [24,25]. Most of these works are limited
to studies of bipartite correlations only as the concept of
discord, which relies on the definition of mutual informa-
tion, is not defined for multipartite systems. In some of the
studies, it is also desirable to compare various notions of
quantum correlations. It is well known that the different
measures of quantum correlation are not identical and
conceptually different. For example, the discord does not
coincide with entanglement and a direct comparison of two
notions is rather meaningless. Therefore, a unified classi-
fication of correlations is in demand.

In this Letter, we resolve these two issues by introducing
a measure for classical and nonclassical correlations for
quantum states which is applicable for multipartite sys-
tems. Our measure of correlations is based on the idea that
a distance from a given state to the closest state without the
desired property (e.g., entanglement or discord) is a mea-
sure of that property. For example, the distance to the
closest separable state is a meaningful measure of entan-
glement. If the distance is measured with relative entropy,
the resulting measure of entanglement is the relative en-
tropy of entanglement [26,27]. In this Letter, using relative
entropy we define measures of nonclassical correlations as
a distance to the closest classical states, though many other
distance measures can serve just as well. Since all the
distances are measured with relative entropy, this provides
a consistent way to compare different correlations, such as
entanglement, discord, classical correlations, and quantum

FIG. 1. Correlations in a quantum state. An arrow from x to y,
x ! y, indicates that y is the closest state to x as measured by the
relative entropy Sðx k yÞ. The state � 2 E (the set of entangled
states), � 2 S (the set of separable states), � 2 C (the set of
classical states), and � 2 P (the set of product states). The
distances are entanglement, E, quantum discord, D, quantum
dissonance, Q, total mutual information, T� and T�, and classi-

cal correlations, C� and C�. All relative entropies, except for

entanglement, reduce to the differences in entropies of y and x,
Sðx k yÞ ¼ SðyÞ � SðxÞ. With the aid of L� and L� the closed

paths are additive, i.e., Eq. (5).
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dissonance, a new quantum correlation that may be present
in separable states. Dissonance is a similar notion to dis-
cord, but it excludes entanglement. The diagram in Fig. 1
illustrates these relations. We give formulae for various
correlations and show additivity and subadditivity of cor-
relations. We find that a pure multipartite state, theW state,
contains dissonance along with entanglement unlike the
general bipartite pure state case. Finally, we compare our
results with the original definition of discord [5,6] and
measurement induced disturbance [9].

Definitions.—We begin by providing the definitions of
the states discussed in this Letter. A product state of
N-partite system, a state with no correlations of any kind,
has the form of � ¼ �1 � . . . � �N , where �n is the re-
duced state of the nth subsystem. The set of product states,
P , is not a convex set in the sense a mixture of product
states may not be another product state. The set of classical
states, C, contains mixtures of locally distinguishable states

� ¼ P
kn
pk1...kN jk1 . . . kNihk1 . . . kNj ¼

P
~kp ~kj ~kih ~kj, where

p~k is a joint probability distribution and local states jkni
span an orthonormal basis. The correlations of these states
are identified as classical correlations [5–7,28]. Note that C
is not a convex set; mixing two classical states written in
different bases can give rise to a nonclassical state. The set
of separable states, S, is convex and contains mixtures of

the form � ¼ P
ipi�

ðiÞ
1 � . . . � �ðiÞ

N . These states can be

prepared using only local quantum operations and classical
communication [29] and can possess nonclassical features
[5,6]. The set of product states is a subset of the set of
classical states which in turn is a subset of the set of
separable states. Finally, entangled states are all those
which do not belong to the set of separable states. The
set of entangled states, E, is not a convex set either.

The relative entropy between two quantum states x and y
is defined as Sðx k yÞ � �trðx logyÞ � SðxÞ, where SðxÞ �
�trðx logxÞ is the von Neumann entropy of x. The relative
entropy is a non-negative quantity and due to this property
it often appears in the context of distance measure though
technically it is not a distance; e.g., it is not symmetric. In
Fig. 1, we present all possible types of correlations present
in a quantum state �. T� is the total mutual information of
� given by the distance to the closest product state. If � is
entangled, its entanglement is measured by the relative
entropy of entanglement, E, which is the distance to the
closest separable state �. Having found �, one then finds
the closest classical state, ��, to it. This distance, denoted
by Q, contains the rest of nonclassical correlations (it is
similar to discord [5,6] but entanglement is excluded). We
call this quantity quantum dissonance. Alternatively, if we
are interested in discord [30], D, then we find the distance
between � and closest classical state ��. Summing up, we

have the following nonclassical correlations:

E ¼ min
�2S

Sð� k �Þ ðentanglementÞ; (1)

D ¼ min
�2C

Sð� k �Þ ðquantum discordÞ; (2)

Q ¼ min
�2C

Sð� k �Þ ðquantum dissonanceÞ: (3)

Next, we compute classical correlations as the minimal
distance between a classically correlated state, �, and a
product state, �: C ¼ min�2PSð� k �Þ. Finally, we com-
pute the quantities labeled L� and L� in Fig. 1, which give

us additivity conditions for correlations.
Distances.—We present formulae for the quantities in

Fig. 1 beginning with Lemma 1 which describes how we
find the closest product state.
Lemma 1.—The closest product state of any generic

state, �, as measured by relative entropy, is its reduced
states in the product form, i.e., �� ¼ �1 � . . . � �N .

Proof.—Assume that some state, � ¼ �1 � . . . � �N , is
the closest product state to �. Then consider the difference:
Sð� k ��Þ � Sð� k �Þ � 0. Using the linearity of trace

and additivity of log function we have the identity
trð� logð�1 � �2ÞÞ ¼ trðtr2ð�Þ log�1Þ þ trðtr1ð�Þ log�2Þ.
Applying this identity to both terms of the inequality we
have

P
iSð�i k�iÞ�Sð�i k�iÞ¼�Sð�� k�Þ�0, a nega-

tive quantity with equality only if �� ¼ �. Therefore, for

all states � we find min�2PSð� k �Þ ¼ Sð� k ��Þ. h

Theorem 1.—The relative entropy of a generic state, �,
and its reduced states in the product form, ��, is the total

mutual information.
Proof.—Using linearity of trace and additivity of log we

have T� � Sð� k ��Þ ¼ �tr½� logð�1 � . . . � �NÞþ
� log�� ¼ P

i � trð�i log�iÞ þ trð� log�Þ ¼ Sð��Þ�
Sð�Þ, which is the total mutual information (see [31] and
the references within). This quantity is equal to the mutual
information for bipartite systems. h
Classical correlations.—The last theorem yields mini-

mal relative entropies for all of the vertical arrows leading
to product states in Fig. 1. Included are also classical
correlations given by C� ¼ Sð���

Þ � Sð��Þ and C� ¼
Sð���

Þ � Sð��Þ.
Theorem 2.—Given a generic state �, the closest classi-

cal state is �� ¼ P
~kj ~kih ~kj�j ~kih ~kj, where fj ~kig forms the

eigenbasis of ��.

Proof.—Let �� be the closest classical state to �. Any

other classical state Xwill have more relative entropy (with
respect to �) than ��; Sð� k XÞ � Sð� k ��Þ � 0 with

equality if and only if X ¼ ��. Construct X by projecting

� in the eigenbasis of ��, X ¼ P
~kj ~kih ~kj�j ~kih ~kj. Evaluate

the first term in the inequality above by inserting a com-

plete set of projectors
P

~kj ~kih ~kj and using the idempotent

property of projectors, the cyclic properties of trace, and

the fact that j ~kih ~kj commute with X to obtain Sð�kXÞ¼
�trðP ~kj ~kih ~kj�logXÞ�Sð�Þ¼�trðP ~kj ~kih ~kj�j ~kih ~kjlogXÞ �
Sð�Þ¼SðXÞ�Sð�Þ. Using the same techniques the second
term of the inequality simplifies as Sð�k��Þ¼
�trðX log��Þ�Sð�Þ. Finally the inequality becomes

Sð�kXÞ�Sð�k��Þ¼SðXÞ�trðXlog��Þ¼�SðXk��Þ�0,
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a negative quantity. The only possibility is�trðX log��Þ ¼
SðXÞ ¼ Sð��Þ, and hence X ¼ ��. h

Discord and dissonance.—Theorem 2 yields useful ex-
pressions for the quantum discord and quantum dissonance
because the minimization of the relative entropy over the
classical states is now identical to minimization of the

entropy Sð�xÞ over the choice of local basis j ~ki:
D ¼ Sð��Þ � Sð�Þ and Q ¼ Sð��Þ � Sð�Þ; (4)

where Sð�xÞ ¼ minj ~kiSð
P

~kj ~kih ~kjxj ~kih ~kjÞ.
Theorem 3.—The equations for L� and L� are L� ¼

Sð���
Þ � Sð��Þ and L� ¼ Sð���

Þ � Sð��Þ.
Proof.—To find the formula for L� we start by evaluat-

ing Sð� k ���
Þ ¼ �trð� log���

Þ � Sð�Þ. Using the fact

that ���
has the same basis as �� and inserting a complete

set of projectors in that basis in the first term gives us
�trð� log���

Þ ¼ �trð�� log���
Þ. The additivity of the log

and linearity of trace gives �trð� log���
Þ ¼ Sð���

Þ. On
the other hand we can use the linearity of trace right away
to get �trð� log���

Þ ¼ �trð�� log���
Þ ¼ Sð���

Þ or

���
¼ j ~kih ~kj��j ~kih ~kj, where fj ~kig forms the basis of ��.

Finally L� ¼ Sð�� k ���
Þ ¼ Sð���

Þ � Sð��Þ. The proof

for the ‘‘�’’ side proceeds in the same way. h
The theorems above give us a method to compute all

classical and quantum correlations other than entangle-
ment. Surprisingly, they also give us the following addi-
tivity relations for correlations:

T� ¼ Dþ C� � L�; and T� ¼ Qþ C� � L�: (5)

These relations correspond to the closed paths in Fig. 1 and
mean that the sum of quantum and classical correlations is
equal to the sum of total mutual information and the quan-
tities labeled as L� and L�. Though, there is no physical in-

terpretation for L� and L�, yet these quantities play a role

in forming relations such as above. Note, above entangle-
ment is present ‘‘within’’ discord but not by itself. We may
wonder how do entanglement, dissonance, and classical
correlations compare to the total mutual information.

Examples.—We offer three examples (two with multi-
partite states) below in which we calculate all possible
correlations and find the additivity relations.

1. Bell-diagonal states.—Consider mixed states of two
qubits with vanishing Bloch vectors for the reduced opera-
tors. They are equivalent up to local unitary operations to
Bell-diagonal states � ¼ P

4
i¼1 �ij�iih�ij, where �i are

ordered in nonincreasing size and j�ii are the four Bell
states. � is entangled when �1 > 1=2. The closest sepa-
rable state is � ¼ P

4
i¼1 pij�iih�ij where p1 ¼ 1=2 and

the remaining probabilities are pi ¼ �i=½2ð1� �1Þ� [27].
Following the calculation for � in [27] one can show the
closest classical states are given by �¼ q

2½j�1ih�1jþ
j�2ih�2j�þ 1�q

2 ½j�3ih�3jþj�4ih�4j�, with q� ¼
�1 þ �2 and q� ¼ p1 þ p2. The product states � are all

identical and given by the normalized identity 1=4. Given
these states one can calculate entanglement, discord, dis-
sonance, and classical correlations. The correlations are
subadditive: T� � EþQþ C�.

2. W state.—The closest separable state to a bipartite
pure entangled state is a classical state [27]. This means
entanglement represents all quantum correlations leading
to the additivity relation T� ¼ Eþ C�. Multipartite pure

states may contain other nonclassical correlations than
entanglement. Consider the jWi state of three qubits jWi ¼
1ffiffi
3

p ðj100i þ j010i þ j001iÞ. The state is clearly entangled

with the closest separable state of the form [32], � ¼
8
27 j000ih000j þ 12

27 jWihWj þ 6
27 j �Wih �Wj þ 1

27 j111ih111j,
where j �Wi ¼ 1ffiffi

3
p ðj011i þ j101i þ j110iÞ. Contrary to the

bipartite case, � is not a classically correlated state. More-
over, �� and �� are different states obtained by dephasing

� in the standard basis for ��, and � in the x basis for ��.

The correlations in the jWi are: E � 1:17, D � 1:58, Q �
0:94, C� � 1:17, C� � 0:36, L� ¼ 0, and L� ¼ 0:24.

Once again this gives us subadditivity of correlations:
T� > EþQþ C�. Entanglement and dissonance are

said to jointly belong to discord, but when combined the
two are greater than discord in this example, D< EþQ.
3. Cluster state.—Cluster state is a pure multipartite state

which has been known as a useful resource for measure-
ment based quantum computation [33,34]. Cluster state for
four parties is jC4i¼ j0þ0þiþj1þ1þiþj0�1�iþ
j1�0�i. The closest separable state to the cluster
state is �C4

¼ 1
4ðj0þ0þih0þ0þjþj1þ1þih1þ1þjþ

j0�1�ih0�1�jþj1�0�ih1�0�jÞ [32], which is a
classical state. The correlations are: entanglement is equal
to discord, E¼2,Q ¼ 0, and C� ¼ 2 and we also have the

additivity relation T� ¼ Eþ C�. It is surprising, in light of

the previous example, that the correlations in a cluster state
behave like the correlations in pure bipartite states.
From the examples above we conjecture that the corre-

lations of a quantum state are subadditive in the sense T� �
EþQþ C�. The source of the subadditivity may be due
to entanglement being less than the difference in the en-
tropies of � and �, i.e., Sð�Þ � �trð� log�Þ. We have not
been able to prove this explicitly nor have we found an
example showing the contrary.
Comparison with other measures.—We now compare

our measure of quantum correlations with two other mea-
sures of nonclassicality, the original quantum discord and
measurement induced disturbance.
The original definition of discord [5,6] involves bi-

partite systems with classicality for only one sub-
system. We can define a classical state in this manner by
restricting the projective operation to one subspace as
�� ¼ P

kjkihkj � 1�jkihkj � 1. This does not alter any

theorems of this Letter. Avoiding minimization for the
moment, the equation for original discord is �¼
Sð�AÞ�Sð�ÞþP

kpkSðjkihkj��k
BÞ. Using Sð

P
kpkjkihkj �

�k
BÞ ¼ SðPkpkjkihkjÞ þ

P
kpkSðjkihkj � �k

BÞ with
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SðPkpkjkihkjÞ ¼ SðtrBð��ÞÞ and adding and subtracting

Sð�BÞ ¼ SðtrAð��ÞÞwe get � ¼ Sð��Þ � Sð�Þ þ ½Sð��Þ �
Sð���

Þ� ¼ D� L� or equivalently � ¼ T� � C�. This is a

remarkably simple relationship between the two forms of
discord with the key difference being in minimization. We
minimize the quantity D, while for the original discord,
D� L� is minimized over all measurements jkihkj. Also
note that this relation may not hold when the original
discord is considered with positive operator valued mea-
sure as the analysis above only considers projective
operations.

Measurement induced disturbance.—(MID) [9] is de-
fined as the difference in the mutual information of �
and � ¼ P

ijjijihijj�jijihijj, where fjijig form the basis

of the product state ��. This means both � and � have the

same reduced states, leading to the formula Ið�Þ � Ið�Þ ¼
Sð�Þ � Sð�Þ for MID. Once again this is remarkably
similar to discord (or dissonance) defined in the Letter.
The difference between the two measures is the minimi-
zation, as the basis of �� may not minimize the relative

entropy, i.e., Sð�Þ � Sð��Þ. This can be seen in the

following nonclassical two qubit state: � ¼ ð1�
qÞPijpijjijizzhijj þ q

P
i
1
2 jiiixxhiij. The reduced states of

� are diagonal in the z basis and therefore � is given
by the diagonal elements of � in that basis. For the values
of pij near

1
4 , � will nearly be a fully mixed state, but if the

value of q is large enough then the entropy of �� will be

minimized in a basis that is close to the x basis. This shows
that MID is not the same as relative entropy of discord.
When L� ¼ 0, the reduced basis of � and �� are the same,

and therefore for those states MID is the same as our
discord.

Conclusions.—We have discussed the problem of sepa-
ration of total correlations in a given quantum state into
quantum entanglement, dissonance, and classical correla-
tions. Quantum entanglement and dissonance, whose novel
definition isintroduced here, jointly belong to what is
known as quantum discord. Putting all correlations on an
equal footing has another potential advantage in addition to
those discussed in our work. Namely, given that relative
entropy between two states tells us how distinguishable
they are [35], a question arises as to whether this quantity is
connected to the efficiency of quantum information pro-
cessing. Can dissonance, for instance, give us more effi-
cient information processing to what classical correlations
allow? Even more fascinatingly, could it be that dissonance
is as powerful as entanglement as far as quantum comput-
ing is concerned? We hope that our definitions of correla-
tions, which apply to any number of subsystems of
arbitrary dimensionality, will provide further stimulus for
these important and fundamental questions.
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