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A remarkable feature of quantum theory is nonlocality (Bell inequality violations). However, quantum

correlations are not maximally nonlocal, and it is natural to ask whether there are compelling reasons for

rejecting theories in which stronger violations are possible. To shed light on this question, we consider

post-quantum theories in which maximally nonlocal states (nonlocal boxes) occur. We show that

reversible transformations in such theories are trivial: they consist solely of local operations and

permutations of systems. In particular, no correlations can be created; nonlocal boxes cannot be prepared

from product states and classical computers can efficiently simulate all such processes.
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Introduction.—Quantummechanics exhibits the remark-
able feature of nonlocal correlations, as highlighted in
Bell’s seminal paper [1]. Such correlations have (up to a
few remaining loopholes) been extensively verified in ex-
periments [2]. Aside from their theoretical importance,
nonlocal correlations can be exploited for technological
use: they are vital in entanglement-based quantum key
distribution schemes [3], for example, where their presence
can be used to guarantee security (see also [4] for a recent
review).

While quantum mechanics violates Bell inequalities, it
does not do so in the maximal possible way. There are
conceivable devices, so-called nonlocal or Popescu-
Rohrlich boxes, that permit even stronger correlations
than quantum mechanics does, while respecting the no-
signalling principle [5–7]. Such correlations are not ob-
served in nature and the question arises as to whether other
fundamental principles might be violated if they were to
exist.

There has already been some progress towards answer-
ing this question. For example, the existence of nonlocal
boxes would lead to some communication complexity
problems becoming trivial [8,9], the possibility of oblivi-
ous transfer [10] and the lack of so-called information
causality [11]. It has also been realized that in a theory in
which maximally Bell violating correlations emerge, the
set of possible dynamical transformations would be se-
verely restricted compared to those allowed in quantum
theory [12]. While a complete classification of the dynam-
ics has remained elusive, it has been shown, for example,
that entanglement swapping is impossible [13,14].
Furthermore, the question of the computational power of
such a theory has been raised [12,14].

We work in the framework of generalized probabilistic
theories [12,15–17], adopting the pragmatic operational
view that the physical content of a theory is in the predicted

statistics of measurement outcomes given preparations and
transformations. The framework makes minimal assump-
tions and allows for mathematical rigor. We consider a
system composed of N subsystems. To each subsystem
one of M � 1 measurements may be applied, yielding
one of K � 2 outcomes (in the following, unless otherwise
stated, we assume each subsystem has the sameM and K).
The state space contains all nonsignaling correlations,
corresponding to so-called generalized nonsignaling the-
ory [12] or, more colloquially, boxworld.
Our main result (Theorem 1) is that (except in the case

M ¼ 1 which corresponds to classical theory) the set of
reversible transformations in boxworld is trivial: all such
operations are a combination of local operations on a single
system (which correspond to relabelings of measurements
and their outcomes) and permutations of local systems
(which correspond to relabelings of subsystems). This
solves the aforementioned open problem concerning the
computational power of boxworld in the case of reversible
dynamics [12,14].
Another interesting consequence is that, in boxworld,

measurements and dynamics are necessarily distinct physi-
cal processes, in the sense that a measurement cannot be
seen as a reversible dynamics on the system comprising the
state and measurement device (cf. quantum theory, where
the measurement process can be seen as a unitary evolution
from the point of view of an external observer).
We note that, in the case of a classical-boxworld hybrid

system, Theorem 1 does not hold—we give an example of
a CNOT operation on this system at the end of this Letter.
However, for all types of system, including those where the
number of measurements and outcomes differ between the
subsystems, reversible dynamics map pure product states
to pure product states; i.e., nonlocal states cannot be re-
versibly prepared from product states. This is our second
main result (Theorem 2).
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A geometric intuition behind this result is as follows.
The state space of the theory is a convex polytope, and
reversible transformations must map it to itself. They
therefore correspond to symmetries of the polytope. The
polytope is in some way stellated, with the vertices corre-
sponding to maximally nonlocal states having a different
character from local ones. They are, hence, not connected
by symmetries of the polytope. A two-dimensional carica-
ture is shown in Fig. 1.

Boxworld.—Recall that we have a system comprising N
subsystems and, on each subsystem, one of M possible
measurements can be applied (corresponding to dif-
ferent measurement devices), yielding one of K possible
outcomes. The local measurements are denoted
fX0; . . . ; XM�1g. A measurement on the entire system
made up of local measurements can then be described by
a string A1 . . .AN , where Ai 2 fX0; . . . ; XM�1g specifies the
measurement applied to the ith subsystem. Similarly, the
corresponding outcomes are denoted a1 . . . aN , with ai 2
f0; . . . ; K � 1g. Measurement-outcome pairs are called ef-
fects, e.g., a measurement of X1 giving outcome 3. A state
is then a function P: ða1 . . . aNjA1 . . .ANÞ � ½0; 1�, which
gives the probability of the effect that A1 . . .AN is mea-
sured and gives outcomes a1 . . .aN . More general mea-
surements are possible: a measurement is a collection of
effects for which the sum of the outcome probabilities over
the collection is 1 when acting on any state. Such mea-
surements include procedures whereby the measurement
performed on a particular subsystem depends on the out-
comes of previous measurements, convex combinations of
such procedures and more [14]. However, the statistics of
the local measurements A1 . . .AN are sufficient to uniquely
determine the outcome probabilities of all measurements,
and hence can be used to specify the state. This nontrivial
assumption is known as the local observability principle
[18].

Furthermore, the subsystems can be spatially separated,
and hence we require that P satisfies the nonsignaling
conditions, i.e., that

P
K�1
ai¼0 Pða1; . . . ; ai; . . . ; aNjA1; . . . ;

Ai; . . . ; ANÞ is independent of Ai. This implies that the mar-
ginal distribution on some set of subsystems is independent
of the choice of measurement(s) on other subsystems.

Boxworld is a physical theory whose state space consists
of any P subject to: (i) P takes values in ½0; 1�; (ii) P is
normalized in the obvious sense; and (iii) P satisfies the
nonsignaling conditions. The constraints (i)–(iii) are such
that the state space is a convex polytope.
We first deal with the special caseM ¼ K ¼ 2 (the case

of so-called gbits [12]). The corresponding state spaces
(defined below) contain interesting nonlocal states, for
example, nonlocal boxes with maximal Bell violating cor-
relations. We label the two measurements X0 ¼ X and
X1 ¼ Z.
Mathematical framework.—We work in the generalized

probabilistic framework (see, e.g., [12,15–17]). Here,
states are represented as vectors embedded in a real vector
space. Effects will also be represented as vectors, such that
the probabilities of outcomes will be given by inner prod-
ucts between the relevant vectors. We begin with the case
of a single system (N ¼ 1). We choose three linearly
independent vectors X, Z, 1 2 R3. The vector X is identi-
fied with ð1jXÞ, which is the effect that the X measurement
gives outcome 1. We define a vector :X :¼ 1� X and
associate it with ð0jXÞ. The prefix :may be interpreted as a
negation. Lastly, the :Z effect is defined analogously as
:Z :¼ 1� Z. BecauseX, Z, 1 are linearly independent, for
every state P, there is a unique vector s 2 R3 representing
P in the sense that hX; si ¼ Pð1jXÞ, hZ; si ¼ Pð1jZÞ and
h1; si ¼ 1. It follows that h:X; si ¼ Pð0jXÞ and likewise

for Z. We will refer to the set P ð1Þ ¼ fX;:X; Z;:Zg as the
single-site extremal effects. (Note that the quantum ana-
logue of our effect vectors are projectors, and the inner
product is analogous to the Hilbert-Schmidt scalar product,
mapping states, �, and projectors, �, to probabilities,
Trð��Þ.)
TheN-subsystem extremal effects P ðNÞ are defined to be

the tensor products A1 � . . . � AN , where Ai 2 P ð1Þ (the
reason for this definition is that it recovers the full set of
nonsignaling distributions for the state space, as will be
shown in Lemma 1). We further define the identity on N

sites, 1ðNÞ :¼ 1 � . . . � 1. A central object is the convex

cone [19]KðNÞ generated by P ðNÞ. This cone is the collec-
tion of all vectors which can be written as a linear combi-

nation of elements of P ðNÞ with non-negative coefficients.
To any convex cone K, one can associate a dual cone
K� ¼ fsjhA; si � 08 A 2 Kg. We will identify this with
the set of unnormalized states. Our interest in cones and
duality stems from the following lemma, which character-

izes the state space of boxworld in terms of the coneKðNÞ.
Lemma 1.—Let SðNÞ be the set of vectors s in the dual

cone ðKðNÞÞ� which satisfy h1ðNÞ; si ¼ 1. The space of
(normalized) states in boxworld can be represented by

SðNÞ.
Proof.—We use the notation :0A :¼ A and :1A :¼ :A

for A 2 fX; Zg. The vectors s 2 SðNÞ will henceforth be

called states; they satisfy h1ðNÞ;si¼1 and hB;si�0 for all

B2KðNÞ. To every state s, we associate a probability dis-

L L

LL

NL NL

NL
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FIG. 1. Two-dimensional caricature of the (normalized) box-
world state space formed by stellating a square. Local vertices
are denoted by L and nonlocal ones by NL. No symmetries of
this object take L states to NL states or vice versa.
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tribution P � Pða1; . . . ; aNjA1; . . . ; ANÞ by h:a1A1 � . . . �
:aNAN; si for Ai 2 fX; Zg and ai 2 f0; 1g. First we show
that every such P is a valid nonsignaling probability dis-
tribution. By definition, P is non-negative. To verify nor-

malization, note that 1ðNÞ ¼ P
x2f0;1gN:x1A1 � . . . � :xNAN

for any choices of Ai 2 fX; Zg, so that
P

a1;...;aN
Pða1; . . . ; aNjA1; . . . ; ANÞ ¼ h1ðNÞ; si ¼ 1. P is

also nonsignaling since
P

ai
Pða1; . . . ; aNjA1; . . . ; ANÞ is

the sum of h:a1A1 � . . . � Ai � . . . � :aNAN; si and
h:a1A1 � . . . � :Ai � . . . � :aNAN; si which equals
h:a1A1 � . . . � 1 � . . . � :aNAN; si, and is hence indepen-
dent of Ai.

To show that every nonsignaling distribution has an
associated state, note that there is a unique vector
s 2 ðR3Þ�N such that h:a1A1 � . . . � :aNAN; si ¼
Pða1; . . . ; aNjA1; . . . ; ANÞ for :aiAi 2 fX; Z;:Xg (since
these effects span the space). It is then easy to see that
the no-signalling property enforces consistency also in the
case that :aiAi ¼ :Z for some i. Non-negativity and nor-
malization follow directly from the corresponding state-
ments for the probability distribution P. h

Transformations.—First note that all allowed dynamical
transformations in general probabilistic theories (revers-
ible or not) are linear—this follows from the fact that they
have to respect convex combinations, which correspond to
probabilistic mixtures. For a general proof of this fact see
[12].

The allowed transformations, T, are defined to be linear

maps with the property that for all s 2 SðNÞ, Ts 2 SðNÞ. A
transformation is reversible if both T and T�1 are allowed
transformations. It follows that a reversible transformation

maps the state space SðNÞ bijectively onto itself. Since T is
a linear map, it is also the case that T maps extremal states
to extremal states.

Note that the states s 2 SðNÞ themselves do not have a
physical meaning—only their scalar products with effects
do, i.e., hA; si (which are probabilities). Since hA; Tsi ¼
hTyA; si, the dynamics may equivalently be specified by
means of the adjoint map Ty. (In quantum theory, the
analogue is passing from the Schrödinger to the
Heisenberg picture.) Then:

Lemma 2.—Adjoint reversible transformations Ty map

the cone of effects KðNÞ bijectively onto itself. Moreover,

they map the set of extremal effects, P ðNÞ, onto itself.
Proof.—The first claim is a straightforward consequence

of the fact that ðKðNÞÞ�� ¼ KðNÞ [19].
We turn to the second statement. Since it is a convex

cone, KðNÞ is completely characterized by its extremal

rays. By linearity, Ty maps the extremal rays of KðNÞ

onto themselves. From the definition of KðNÞ, we know
that the cone is the convex hull of the 4N rays formed by all

A 2 P ðNÞ. One can verify that these are indeed the ex-

tremal rays. Therefore, for every A 2 P ðNÞ, there exists an
A0 2 P ðNÞ and a non-negative number � such that TyðAÞ ¼
�A0. To see that �must equal 1, observe that for every B 2

P ðNÞ, there exist (product) states s0, s1 2 SðNÞ such that
hB; s0i ¼ 0 and hB; s1i ¼ 1. Since this holds, in particular,
for both A and A0, it follows that � ¼ 1. h
Orthogonal representation of transformations.—There

are 4N extremal effects, and thus 4N! permutations acting

on P ðNÞ. We go on to show that only a tiny fraction of those
is actually realizable in boxworld. It will be convenient to

use a specific representation of X, Z and 1: We set X ¼
ð1=2; 1= ffiffiffi

2
p

; 0Þ, Z ¼ ð1=2; 0; 1= ffiffiffi
2

p Þ and 1 ¼ ð1; 0; 0Þ.
Lemma 3.—With respect to the representation above, it

holds that any reversible transformation T is orthogonal,
i.e., on N subsystems, TyT ¼ 13N , where 1d is the
d-dimensional identity matrix.
Proof.—First observe that with this choice,P
A2P ð1Þ jAihAj ¼ 13 and hence (since P ðNÞ factorizes)P
A2P ðNÞ jAihAj ¼ 13N . Then, since Ty permutes the ex-

tremal effects, TyT ¼ TyðPA2P ðNÞ jAihAjÞT ¼P
A2P ðNÞ jAihAj ¼ 13N . h

The fact that T (and thus Ty) is orthogonal, gives rise to
a host of invariants. If one picks any two extremal effects

Q, R 2 P ðNÞ, then clearly their inner product is a con-
served quantity: hQ;Ri¼ hTyQ;TyRi. However, jhQ;Rij¼
4�N3N�dHðQ;RÞ, where dHðQ;RÞ is the Hamming distance
betweenQ and R, i.e., the number of places at whichQ and
R differ. Thus the Hamming distance of extremal effects is
a conserved quantity: dHðQ;RÞ ¼ dHðTyQ; TyRÞ. It is
well-known in the theory of error correction [20] that the
set of maps on finite strings which preserve the Hamming
distance is highly restricted: the group of those maps is
generated by local transformations and permutations of

sites only. Thus Ty acts as such an operation on P ðNÞ.
Moreover, since the states in P ðNÞ span the entire space,
the action on this set is sufficient to completely specify Ty.
Furthermore, it is straightforward to see that the set of

allowed local operations comprises exchanging X and Z
(relabeling measurements), exchanging X and :X (relab-
eling the outcome upon input X), exchanging Z and :Z
(relabeling the outcome upon input Z) and combinations
thereof.
Main results.—Combining all the previous results

proves the following theorem in the special case of M ¼
2measurements withK ¼ 2 outcomes (the general proof is
slightly more involved but analogous).
Theorem 1.—Every reversible transformation on a sys-

tem comprising N subsystems in boxworld, with M � 2
measurements at every subsystem each having K � 2 out-
comes, is a permutation of subsystems, followed by local
relabelings of measurements and their outcomes.
We go on to prove:
Theorem 2.—In boxworld, every reversible transforma-

tion maps pure product states to pure product states. This is
true even if the system is coupled to an arbitrary number of
classical systems, and if the number of devices and out-
comes varies from subsystem to subsystem.
We need to slightly extend the notion of outcome vectors

to the general case. We denote the set of extremal effects
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for the ith subsystem by P i ¼ fXi
mðkÞg, where m labels the

measurements (the number of different ms may depend on
i) and k the corresponding outcomes (the number of differ-
ent ks may depend on m and on i). The only relation these
vectors satisfy is

P
kX

i
mðkÞ ¼ 1i, where 1i represents the

identity.

The identity on the full system is then 1ðNÞ :¼ 11 � . . . �
1N, and the extremal effects are P ðNÞ :¼ P 1 � . . . � PN .

The convex coneKðNÞ and the state space SðNÞ are defined
analogously to the binary case previously described. The
statements and proofs of Lemmas 1 and 2 remain valid in
this more general case.

Proof.—To complete the proof of Theorem 2, note that a

state s 2 SðNÞ is a pure product state (that is, of the form
s ¼ s1 � . . . � sN , where all si are pure) if and only if

hA; si 2 f0; 1g for all extremal effects A 2 P ðNÞ. Suppose
that s is a pure product state and T a reversible trans-

formation, then hA; Tsi ¼ hTyA; si 2 f0; 1g for all A 2
P ðNÞ, which proves that Ts must also be a pure product
state. h

Note that Theorem 1 does not, in general, apply to the
case of site-dependent numbers of measurements. For
example, suppose that we have two sites, where the first
has two binary measurements, X and Z, and the second
allows only a single binary measurement, Y. (In other
words, a gbit is coupled to a classical bit.) It is then
straightforward to construct a reversible CNOT operation,
where the classical bit is the control bit. For example, there
is an adjoint reversible transformation that acts as A � Y �
A � Y, A � :Y � :A � :Y for all A 2 fX; Z;:X;:Zg.

In the case of a system composed of several classical
subsystems, Theorem 1 also does not hold—the dynamics
in such a case is nontrivial. Nevertheless, Theorem 2 does
apply to this case—it remains impossible to prepare en-
tangled states from separable ones.

Conclusions.—We have shown that the set of reversible
operations in boxworld is trivial: the only possible opera-
tions relabel subsystems, local measurements and their
outcomes. In particular, there is no boxworld analogue of
an entangling unitary in quantum theory, one cannot re-
versibly prepare nonlocal states from separable ones, nor
perform useful computations reversibly.

In addition, the results have consequences for the inter-
play between dynamics and measurements in boxworld:
suppose we have a system comprising a particle, A, and
two observers, B and C, initially in an uncorrelated tripar-
tite product state. In quantum theory, if B measures A, but
C does not take part in the interaction, then C can model
the corresponding dynamics by a unitary transformation on
the AB system. That is, C can view the whole interaction as
reversible while retaining the ability to correctly predict the
outcome probabilities of any future measurements.
(Theories with such a property might be called fundamen-
tally reversible.) In boxworld, on the other hand, this is not
true: B’s measurement on A would have to create correla-
tions between A and B, but this could never be achieved by

a reversible transformation. Hence C would have to model
the ABmeasurement using irreversible dynamics, even ifC
did not take part in the interaction itself.
It would be interesting to extend our result to explore

which state spaces are compatible with fundamentally
reversible theories in this sense, or with theories that are
transitive, i.e., that every pure state can be reversibly
mapped to any other. This property has been used by
Hardy as an axiom for quantum theory [16]. Both condi-
tions seem to strongly restrict the possible geometry of the
state space, and an interesting open question is how non-
local such theories can be.
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