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We investigate the decay of highly excited states of ultracold fermions in a three-dimensional optical

lattice. Starting from a repulsive Fermi-Hubbard system near half filling, we generate additional doubly

occupied sites (doublons) by lattice modulation. The subsequent relaxation back to thermal equilibrium is

monitored over time. The measured absolute doublon lifetime covers 2 orders of magnitude. In units of the

tunneling time h=J it is found to depend exponentially on the ratio of on-site interaction energy U to

kinetic energy J. We argue that the dominant mechanism for the relaxation is a simultaneous many-body

process involving several single fermions as scattering partners. A many-body calculation is carried out

using diagrammatic methods, yielding fair agreement with the data.
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Understanding the far-from-equilibrium dynamics of
strongly correlated systems is a highly challenging task.
Even the identification of the basic processes involved and
the associated time scales is nontrivial when the system
cannot be described by weakly interacting excitations or
quasiparticles. In these systems, dynamics may couple
states with widely different energies making the descrip-
tion in terms of a restricted set of low energy states
impossible. While progress has been achieved for one-
dimensional systems ([1,2], and references therein), these
results can typically not be extended to higher dimensions.

The main difficulty in analyzing nonequilibrium dynam-
ics in the setting of condensed matter experiments is the
strong coupling to the environment, which introduces ex-
trinsic relaxation mechanisms and makes it challenging to
prepare far-from-equilibrium initial states in a controlled
way. By contrast, the nearly perfect isolation of many-body
systems realized with ultracold atoms makes them a per-
fect candidate for studying the intrinsic dynamics of
strongly correlated systems. In the setting of ultracold
atoms it is possible to prepare a well-controlled initial
state, evolve it under the action of a precisely defined
microscopic Hamiltonian, and monitor the effects of the
characteristic relaxation process [3].

In this Letter, we take advantage of the recent realization
of the repulsive Fermi-Hubbard model with ultracold atom
systems [4–6] to investigate the relaxation of artificially
created highly excited states. This problem appears in
diverse contexts like multiphonon decay of excitons in
semiconductors [7], pump-probe experiments [8], and dy-
namics of resonances in nuclear matter [9]. Because of the
negligible coupling to an external environment, we are able
to carry out a direct comparison of experiment and theory.
The interpretation of these results shows the importance of

high-order scattering processes in bridging the energy gap
between low- and high-energy excitations and how they
can lead to exponentially slow thermalization.
In the experiment, we study the time evolution of doubly

occupied lattice sites (doublons) in the repulsive Fermi-
Hubbard model. This model describes fermionic particles
hopping on a lattice with tunneling J and on-site repulsion
U and is realized by a two-component Fermi gas in an
optical lattice. In the context of a dilute Bose-Hubbard
system isolated repulsively bound pairs have been experi-
mentally identified and studied [10].
We report on the observation of elastic decay of artifi-

cially created doublons [5,11,12] into single particles. The
resulting lifetime is found to increase exponentially with
the ratio U=6J (i.e., the lifetime becomes longer as the
interactions become stronger). We argue that a doublon,
having an excess energy U, decays in a scattering process
involving several single fermions, cf. Fig. 1. Since each of

FIG. 1 (color online). Stability of highly excited states in the
single-band Hubbard model. Doubly occupied lattice sites are
protected against decay by the on-site interaction energy U. The
average kinetic energy of a single particle in a periodic potential
is half the bandwidth 6J. Thus the relaxation of excitations
requires several scattering partners to maintain energy conser-
vation.
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these scattering partners can only absorb an average energy
of 6J, the number of virtual states involved in the simul-
taneous many-body process is U=6J. Hence the decay is
exponentially suppressed for increasingU=6J. We find fair
agreement with diagrammatic calculations where the
strongly correlated nature of the underlying state is crucial
in obtaining the correct value of the scaling exponent.

The experimental sequence used to produce quantum
degenerate Fermi gases has been described in detail in
Ref. [5]. In brief, we prepare ð50� 5Þ � 103 40K atoms
at temperatures below 15% of the Fermi temperature TF in
a balanced mixture of two magnetic sublevels of the F ¼
9=2 manifold. The confinement is given by a dipole trap
with trapping frequencies !x;y;z ¼ 2�� ð35; 23; 120Þ Hz.
Using Feshbach resonances in either a (mF ¼ �9=2,
�7=2) or (mF ¼ �9=2, �5=2) mixture [13,14], the inter-
action strength is tuned in the range 98a0–131a0 or
374a0–672a0, respectively, where a0 is the Bohr radius.
After adjusting the scattering length to the desired value,
we add a three-dimensional cubic optical lattice. The lat-
tice depth is increased in 200 ms to final values between
6:5ER and 12:5ER in units of the recoil energy ER ¼
h2=2m�2. Here � ¼ 1064 nm is the wavelength of the
lattice beams. The lattice beams have Gaussian profiles
with 1=e2 radii ofwx;y;z ¼ ð160; 180; 160Þ �m. For a given

scattering length and lattice depth, J and U are inferred
from Wannier functions [16]. Their statistical and system-
atic errors are dominated by the lattice calibration and the
accuracies in width and position of the two Feshbach
resonances [13,14]. Depending on U and J the accessible
final regimes of the system range from metallic to Mott
insulating phases with a double occupancy below 15%.

The preparation of the system is followed by a sinusoi-
dal modulation of the lattice depth with an amplitude of
10% and frequency close to U=h. This causes an increase
of the double occupancy to values up to 35% [17,18].

After the modulation the system is in a nonequilibrium
state, which we let evolve freely at the initial lattice depth

and interaction strength for up to 4 s. This is followed by a
sudden increase of the lattice depth to 30ER, which pre-
vents further tunneling. We then measure the amount of
atoms residing on singly (doubly) occupied sites Ns (Nd)
by encoding the double occupancy into a previously un-
populated spin state using rf spectroscopy [5]. Combining
Stern-Gerlach separation and absorption imaging we ob-
tain the single occupancy ns ¼ Ns=Ntot, double occupancy
nd ¼ Nd=Ntot and total atom number Ntot ¼ Ns þ Nd.
We record the time evolution of the total atom number

and the single and double occupancy, see Fig. 2. The
double occupancy is found to decay exponentially, while
additional losses are also observed on longer time scales,
which lead to a reduction of the total atom number. To
extract the doublon lifetime we model these decays by a set
of coupled rate equations:
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�
1

�in
þ 1

�loss

�
Nd;0; _Ns ¼ 1

�D
�Nd � 1

�loss
Ns;

� _Nd ¼�
�
1

�D
þ 1

�in
þ 1

�loss

�
�Nd: (1)

Here �Nd is the additional amount of double occupancy
created by the lattice modulation as compared to the equi-
librium population Nd;0. The three time constants corre-

spond to three independent local decay processes differing
in the type of site they affect: the lifetime of doublons �D
describes a population flow from doubly occupied to singly
occupied lattice sites visible as a fast decay (rise) of double
(single) occupancy within 0:01–1 s. The other two times
denote loss time constants, which lead to a reduction of the
total atom number: �loss corresponds to losses affecting
both site types in the same manner, which is only observed
in the total atom number. Additional inelastic losses on
doubly occupied sites are summarized by �in, visible as a
simultaneous decay of both the total atom number and
double occupancy. Changes of the decay times during the
decay and higher order terms in the rate equations are
excluded.
We simultaneously fit the time-dependent populations

obtained from Eq. (1) to this data set and to a correspond-
ing reference data set without lattice modulation. Since the
modulation does not change the losses, this procedure
removes the influence of �in and �loss, allowing for a
reliable determination of the doublon lifetime �D. The
model and the observation are found to agree very well
within experimental uncertainties, as shown in Fig. 2.
We measure this doublon lifetime for various tunneling

and interaction strengths, covering a parameter range
where J and U each differ by at least a factor of 4 (inset
Fig. 3). The lifetime in units of the tunneling time is plotted
logarithmically versus the ratio U=6J in Fig. 3. The data
are well described by an exponential function:

�D
h=J

¼ C exp

�
�
U

6J

�
: (2)

The scaling exponent � is found to be � ¼ 0:82� 0:08

FIG. 2 (color online). Comparison of the time evolution of the
double occupancy and total atom number for different ratios
U=6J. The data were recorded using the (�9=2, �5=2) spin
mixture, with U=h ¼ 3:9 kHz (3.1 kHz) and J=h ¼ 140 Hz
(200 Hz) for the triangular (round) data points. The lines show
fits of the integrated population equations of Eq. (1). The total
atom numbers are scaled to the initial values. The inset shows a
magnification for short times. Error bars denote the statistical
error of at least four identical measurements.
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with C ¼ 1:6� 0:9. We find fair agreement with our cal-
culations of the doublon lifetime. The systematic deviation
of the data for the two spin mixtures [19] seems to indicate
that the data show physics beyond Eq. (2).

In the following we argue that this exponential scaling of
the doublon lifetime originates from a high-order scatter-
ing process involving several single atoms as scattering
partners. In the preparation of the nonequilibrium state by
lattice modulation, we create holes as well as doublons in
the bulk and thus drive the system into a compressible
state. An isolated doublon has an energy U, which it
must transfer to other excitations in order to decay. In the
compressible state the most relevant excitations are metal-
lic with a typical energy scale of 6J. Thus a doublon must
scatter with several fermions. The number of scattering
partners is on the order of n ¼ U=6J. The matrix element
M for the decay rate � may be estimated via perturbation
theory M� J

6J � J
2�6J � � � � � J

n�6J and �=J / M2. Using

Stirling’s formula, we then find the same scaling behavior
as in Eq. (2). Here � is a parameter on the order of unity
and depends at most logarithmically on U=6J.

For the quantitative analysis a few assumptions are
made: we consider the decay of a single doublon in the
background of a homogeneous compressible system. This
is justified since most of the doublons are created in the
central region of the trap, where the filling is highest, and
decay at most within a few sites of where they are produced
(the estimated travel distance for a random walk during the

decay process is not more than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�DJ=h

p
& 10 sites, which

is less than the cloud radius). We neglect spin excitations
and collisions between doublons, as typical energy trans-
fers in these processes are on the order of J2=U, which
leads to a subdominant exponential scaling in U2=J2.
Further, the population of higher bands can be excluded,
since U is always smaller than half the band gap. We also
note that confinement assisted decay of doublons after
quantum tunneling to the edge of the cloud is unlikely, as
the accessible confinement energy is smaller than U and
the tunneling rate is very small.
The complete Hamiltonian of the system may be written

as H ¼ Hpf þHd þHfd, where Hpf describes the back-

ground fermions,Hd is the on-site energy of doublons, and
Hfd is the interaction of the doublon with the background

fermions.
The strong Hubbard repulsion between the fermions

leads to the concept of projection, where two fermions
are forbidden from occupying the same site. In this case,
the fermions can only hop in the presence of a hole on a
neighboring site and are governed by the Hamiltonian

Hpf ¼ �J
X
hiji;�

ð1� ni; ��Þcyi;�cj;�ð1� nj; ��Þ; (3)

where cyi;� (ci;�) is the fermion creation (annihilation)

operator and ni;� is the number operator for fermions

with spin � ( �� denotes spin opposite to �). Expanding
out this Hamiltonian we obtain Hpf ¼ Hf þHp, with

Hf ¼ �J
X
hiji;�

cyi;�cj;� ��
X
i;�

cyi;�ci;�; (4)

Hp ¼ J
X
hiji;�

ðni; ��cyi;�cj;� þ cyi;�cj;�nj; ��Þ; (5)

where Hf describes the free Fermi sea and Hp describes

the interaction induced by the projection and can be
thought of as a process in which a fermion scatters off
the Fermi sea and creates a particle-hole pair. We assume
that the system is close to half filling (chemical potential
� ¼ 0), but we checked that the result is not very sensitive
to the precise value of the filling as shown by the shaded

region in Fig. 3. We neglect the term ni; ��c
y
i;�cj;�nj; �� in Hp

as we have checked that it leads to negligibly small cor-
rections to the doublon decay rate [20].
We now consider the propagation and decay of a dou-

blon in the background state of the projected Fermi sea.

The on-site energy of the doublon is Hd ¼ U
P

id
y
i di,

where dy is a doublon creation operator. The doublon-
fermion interaction Hfd is given by

Hfd ¼ J
X
hiji

ðdyi di þ dyj dj þ dyj diÞcyi�cj�

þ diðcyi"cyj# � cyi#c
y
j"Þ þ H:c:; (6)

where the terms describe projecting out configurations
with a doublon and a fermion on the same site (first and
second term), hopping of doublons with backflow of fer-

FIG. 3 (color online). Semilog plot of doublon lifetime �D vs
U=6J. The lifetime is extracted from data sets as shown in Fig. 2.
Solid and hollow circles denote the (�9=2, �5=2) and (�9=2,
�7=2) spin mixture, respectively, while the dashed line shows
the theoretical result at half filling. The solid line is a fit of
Eq. (2) to the experimental data, yielding � ¼ 0:82� 0:08,
whereas for the theory curve the asymptotic slope at large
U=6J is �T ¼ 0:80. The shaded corridor was obtained by vary-
ing the filling factor in the calculation by�0:3 (which has only a
weak effect on the slope). The inset shows the parameters used to
realize the different values of U=6J. Error bars denote the
confidence intervals of the lifetime fits and the statistical errors
in U=6J. The systematic errors in U=6J and �D=ðh=JÞ are
estimated to be 30% and 25%, respectively.
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mions (third term) and interconversion between a pair of
single fermions and a doublon (last term).

We now see that there are two different processes by
which the doublon can lose energy. It can create a large
number of particle-hole pairs (through the first term in
Hfd), each with an energy of on the order 6J, or it can

create a high-energy particle-hole pair (through Hfd),

which is itself unstable and decays into a shower of
particle-hole pairs (through the action of Hp). The last

process is the result of strong interaction between the
fermions and must be taken into account in order to obtain
an accurate estimate of the doublon lifetime.

Our strategy for determining the doublon lifetime is to
compute the doublon self-energy �ð!Þ diagrammatically
[20] and obtain the decay rate from Im�ðUÞ, the imaginary
part of the self-energy at ! ¼ U. We proceed by first
obtaining the Green function for the projected Fermi sea
(HfþHp) using a diagrammatic perturbation theory. Next,

we use this Green function in a resummation procedure to
obtain �ð!Þ. These steps can be treated as independent
when the doublon density is small, as the presence of the
doublons does not change the background fermion Green’s
functions. Throughout, we follow the principle of maxi-
mizing the number of particle-hole pairs [see Fig. 4(a)] at
each order of perturbation theory. We do miss the class of
diagrams in which interactions between fermions cannot
be described by a fermion self-energy [see Fig. 4(b)]. We
carry out our calculations in the zero temperature formal-
ism. However, since we are looking at high-energy pro-
cesses (!�U), finite temperatures will not have a large
effect on the results as long as T � U [20].

Our theoretical analysis was constructed to capture the
scaling parameter of the doublon lifetime at largeU=6J, as
it relies on generating a large number of particle-hole pairs.
In this regime the theoretically computed value of the
scaling exponent is �T ¼ 0:80 close to half filling, which
agrees well with the experimentally obtained value � ¼
0:82� 0:08. For small U=6J the theory breaks down,
leading to disagreement between experiment and theory
in this regime (see Fig. 3). Although the theory is not
designed to predict the preexponential factor C, we find
reasonable agreement between theory and experiment. For
large U=6J losses are expected to mask the observation of
very long lifetimes.

In conclusion, we have investigated the nonequilibrium
dynamics of fermions in an optical lattice and shown that
the lifetime of doublons scales exponentially with the ratio
of interaction energy to kinetic energy. We argue that the
dominant decay mechanism of doublons is a high-order
scattering process involving several single particles, and
we obtain fair agreement with the experiments based on a
perturbation theory calculation. The results have implica-
tions also for the simulation of strongly correlated lattice
models with ultracold atoms as they pose adiabaticity
constraints on the sweep rates for the system parameters.
On a qualitative level, the results should also be applicable
to bosonic atoms and might help to explain the long
equilibration times recently observed in [21].
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[5] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and

T. Esslinger, Nature (London) 455, 204 (2008).
[6] U. Schneider et al., Science 322, 1520 (2008).
[7] V. Perebeinos and P. Avouris, Phys. Rev. Lett. 101, 057401

(2008).
[8] G. Müller et al., Nature Mater. 8, 56 (2009).
[9] G. B. Brown and W. Weise, Phys. Rep. 22, 279 (1975).
[10] K. Winkler et al., Nature (London) 441, 853 (2006).
[11] S. D. Huber and A. Rüegg, Phys. Rev. Lett. 102, 065301

(2009).
[12] R. Sensarma et al., Phys. Rev. Lett. 103, 035303 (2009).
[13] C. A. Regal and D. S. Jin, Phys. Rev. Lett. 90, 230404

(2003).
[14] We determine the widths of both resonances by measur-

ing the zero-crossing via dephasing of Bloch oscilla-
tions [15]. This yields �B�7=2;�9=2 ¼ 7:5� 0:1 G and
�B�5=2;�9=2 ¼ 7:6� 0:1 G, the latter differing from [13].

[15] M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008).
[16] D. Jaksch, C. Bruder, J. I. Cirac, C.W. Gardiner, and

P. Zoller, Phys. Rev. Lett. 81, 3108 (1998).
[17] C. Kollath, A. Iucci, I. P. McCulloch, and T. Giamarchi,

Phys. Rev. A 74, 041604(R) (2006).
[18] F. Hassler and S. D. Huber, Phys. Rev. A 79, 021607(R)

(2009).
[19] Separate fits to the two spin mixtures yield values of

�ð�9=2;�5=2Þ ¼0:75�0:10 and �ð�9=2;�7=2Þ ¼ 1:00� 0:14.
[20] R. Sensarma et al., arXiv:1001.3881.
[21] C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin,

arXiv:0910.1382.

(a) (b)

FIG. 4. The double lines represent doublon propagators, and
the single lines fermion propagators. (a) Typical doublon propa-
gator diagram showing the creation of particle-hole pairs by both
the doublon and the projected fermions as well as annihilation of
the doublon into a pair of single fermions. (b) Typical example
for a neglected diagram type.
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