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We fluidize a granular medium through localized stirring and probe the mechanical response of

quiescent regions far away from the main flow. In these regions the material behaves like a liquid:

high-density probes sink, low-density probes float at the depth given by Archimedes’ law, and drag forces

on moving probes scale linearly with the velocity. The fluidlike character of the material is set by

agitations generated in the stirred region, suggesting a nonlocal rheology: the relation between applied

stress and observed strain rate in one location depends on the strain rate in another location.
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What governs the flow of granular media? At the grain
level, interactions are mediated by collisions and contacts
[1]. While rapid flows where collisions dominate can be
described by advanced kinetic theories [2], and the under-
standing of flows where both contacts and collisions are
important has recently advanced tremendously [3,4], it
remains difficult to describe slow flows where enduring
contacts dominate the interactions.

Aspects of such slow grain flows can be captured by a
frictional rheology in which the friction laws acting at the
grain scale are translated to effective friction laws for the
stresses acting at a coarse-grained level [5–7]. In such a
Mohr-Coulomb picture, granular media remain jammed
when the ratio of shear � to normal stresses P is below a
critical value given by an effective friction coefficient, �,
while slowly flowing grains correspond to stresses close to
the yielding criterion: �=P � �.

This framework is, however, not complete. The combi-
nation of rate independence and a sharp yielding criterium
leads to a description which predicts the localization of
flows in shear bands of vanishing width and a correspond-
ing sharp separation between stationary zones and flowing
zones [5]. However, in experiments shear bands are found
to be of finite width and the boundary between flowing and
stationary zones is not sharp, with creep flow occurring
even far away from the main shear band [8–13]. The first
key question is therefore: what is the nature of the nearly-
stationary zones far away from the main flow? A second
key question is motivated by the observation that, for slow
flows, the flow rate is independent of the stresses. But if the
flow rate is not determined by the stresses what then is the
physical mechanism that sets the flow rate of slow granular
flows? [3,5,7].

Here we address these questions by locally stirring a
container of glass beads at a given rate (�) while prob-
ing the mechanical response of the essentially quiescent
regions near the surface, away from the shear band
[Figs. 1(a) and 1(b)]. We find that a heavy object—such
as a steel ball—sinks slowly into the sand with a rate
proportional to � [Fig. 1(a)]. Moreover, low-density ob-

jects sink (or rise) to the depth predicted by Archimedes’
law [Fig. 1(c)]. Therefore, granular materials do not exhibit
a yield stress in the presence of flow: flow fluidizes granu-
lar media. By observing the motion of probes immersed in
the sand, we find that the drag forces acting on the probes
are linear in velocity. This suggests that the material is
viscous, although we find that the viscosity depends
strongly on filling height, location, and mass of the
probes—the rheology of the material is highly nonlinear.
Moreover, the relation between applied stress and observed
strain rate in one location depends on the strain rate in
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FIG. 1 (color online). (a) Snapshots of a stainless steel ball of
diameter 25 mm and mass 64 g, sinking into a stationary
granular fluid. The granular fluid is generated in a split-bottom
shear cell (inner radius Rc ¼ 81 mm, disk radius Rs ¼ 60 mm)
filled to a height ofH ¼ 60 mm with millimetric glass beads and
driven at a rate � ¼ 0:1 rps. (b) Experimental setup, with the
domelike shear zone indicated in dark gray. (c) Examples of
probe position, z, as function of time, t, for a filling height of
H ¼ 60 mm. A high-density object sinks in the sand (orange
[light gray] M ¼ 48 g, D ¼ 18 mm, � ¼ 3� 10�3 rps). A
low-density object (M ¼ 40 g, D ¼ 40 mm, � ¼ 0:1 rps) sinks
until reaching an equilibrium depth (red [medium gray])—and
rises up to this same depth if initially deeply submerged (blue
[dark gray]).
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another location [14,15]. Our findings highlight novel be-
havior which we believe to be crucial for the development
of better models of slow granular flows [15–17].

Setup.—Our experiment consists of a split-bottom shear
cell [6,11,12,16], filled with glass beads of mean diameter
d ¼ 1 mm to a height H (Fig. 1). The bottom disk (radius
RS ¼ 60 mm) is driven by a microstepper motor at a rate,
�, which ranges from 10�4 to 1 rps. The relative humidity
of the system is controlled at 8� 2% at room temperature.
Prior to beginning a measurement, the grains are stirred
with a rod, the grain surface is leveled, and the bottom disk
is spun at a rate of 0.5 rps for 20 s. However, we have found
no evidence for systematic dependence of the long-time
behavior of the probe on the preparation history. Grooves
and dimples are machined into the surface of the container
and the disk to create a rough boundary and the resulting
grain flows have been studied extensively [6,11,12,16].

In order to investigate the liquidlike properties of the
system, smooth aluminum cylinders of massM and diame-
terD are immersed in the grains. These probes are attached
to a shaft that passes through an air bearing, which fixes the
horizontal position of the probe while allowing the probe to
rotate and to move in the vertical direction. The probe shaft
next passes into a linear variable differential transformer
(LVDT) position sensor (DC Fastar 2M, accuracy of
2 �m) which we employ to measure the position of the
bottom surface of the probe, z.

Phenomenology.—For the large filling heights (H=Rs >
0:8) examined here, the shear zone that emanates from the
edges of the disk is submerged in the bulk of the material
[Fig. 1(b)], and the residual flow observed at the free
surface is several orders of magnitude smaller than the
driving rate � [11,12]. A probe placed at the surface of
the beads will get stuck at a small depth if the disk is not
rotating (for example, forD ¼ 30 mm andM ¼ 100 g, the
initial depth is less than 5 mm). However, when the disk
begins rotating the probe will immediately start to sink into
the grains. Heavy probes will continue to sink until they
reach the bottom of the container, while light objects reach
a well-defined floating depth [Fig. 1(c)]. By observing the
motion of such probes we will address the following ques-
tions: What sets the floating depth of light objects? Does
the material exhibit a yield stress? What governs the drag
forces on the probes?

Archimedes’ law.—As shown in Fig. 2(a), we have de-
termined the floating depths (zeq) for a series of probes of

varying mass. For each mass, three sinking and three rising
experiments are conducted—in all cases the equilibrium
depths, zeq, are consistent within 0.6 mm.We conclude that

there is no appreciable yield stress in the material: if the
system did exhibit a yield stress, the sinking and rising
probes would reach different equilibrium positions. As
shown in Fig. 2(b), the equilibrium depth varies linearly
with M. Both this linear dependence and the convergence
of the rising and sinking probes to the same floating depth
are suggestive of Archimedes’ law, which in this case

reads:

zeq ¼ HðzeqÞ � �H � 4M

�ð ~DÞ2� ¼ H � �H � 4M

�D2��
:

(1)

Here, both ~D and � are effective parameters that incorpo-
rate finite size effects. First, the probe displaces grains as it
sinks, so the actual height of the grains, HðzÞ, depends on
the probe position. Second, the finite size of the grains
suggests that the effective size of the probe, ~D, may be
somewhat larger than the real value: D< ~D<Dþ d.
Both effects can be incorporated in the finite size parameter
�—the first effect is of order 1þ ðD=ð2RcÞÞ2 � 1:06, the
second effect is of order ð ~D=DÞ2 which ranges from 1 to
1.05—hence we estimate � to be between 1.06 and 1.11.
Finally, we allow for a small correction, �H, which is on
the order of a grain size and takes into account the lower
packing density of grains near the bottom of the probe.
Direct measurement of the mass and volume of well-
compacted grains yields a density of 1:92� 0:05 g=cm3.
As shown in Fig. 2(b), the equilibrium depth is well

described by Eq. (1) for � ¼ 1:08 and �H ¼ d, where d is
the diameter of the beads. The finite size correction, �, lies
within the expected range, and the height correction �H is
also small—we thus conclude that Archimedes’ law de-
scribes the floating depths of our probes accurately, pro-
vided that finite size corrections are properly taken into
account. Note that Archimedes’ law has also been ob-
served in a granular system in which the lateral boundaries
are vibrated [18]—but this driving appears far more vigo-
rous than in our system.
Viscous force.—As shown in Fig. 3, the probe position

approaches the equilibrium depth exponentially for small
jz� zeqj [19]. The data suggest that the characteristic times

for rising probes are somewhat smaller than that for sink-

FIG. 2 (color online). (a) Evolution of the probe position (z)
for � ¼ 0:1 rps, H ¼ 50 mm, D ¼ 40 mm and five different
masses ranging from 40 to 81 g. (b) The equilibrium depths, zeq,

as a function of probe mass for H ¼ 50, 60 mm and D ¼
40 mm. The red diamonds and blue squares correspond to the
sinking and rising cases as shown in panel (a). The green
triangles correspond to lighter probes detached from the inductor
measurement device and imaged with a CCD camera. The
straight lines show Archimedes’ law for a density of
1:92 g=cm3 and finite size correction factor � ¼ 1:08—the
respective effective heights, H� �H, are 49 and 59 mm.
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ing probes, although the apparent slope of the curves is
very sensitive to the precise choice of zeq. In the remainder

of this Letter we focus primarily on sinking probes where
we can vary the probe mass over a wide range.

Since the difference between the gravitational and buoy-
ant forces is linear in z-zeq, the exponential relaxation

implies that the drag force (Fd) on a probe is proportional
to its velocity. Ignoring geometrical form factors for drag
on a cylinder, we define the effective viscosity, �, of the
granular fluid using Fd ¼ ��Ddz=dt. Combining this
drag force with the buoyant force, Fb, and the gravitational
force suggested by Archimedes’ law yields the following
equation of motion for the probes:

�D
dz

dt
¼ �Mgþ Fb: (2)

In contrast, previous work [20,21] finds that drag forces on
intruders in quiescent or oscillated granular media exhibit a
finite threshold.

In the remainder of this Letter we will address the
following two questions. (i) How does the effective vis-
cosity depend on the parameters H and M? (ii) Is the
viscosity set by the local residual flow near the probe?

Viscosity.—From a wide range of experimental data we
conclude that the viscosity is inversely proportional to �.
In Fig. 4(a) we plot the immersion speed, v, at a fixed depth
(z ¼ H� 13 mm) as a function of � for a number of
probes. Clearly, v / � over a wide range of disk rotation
speeds. The characteristic time scale of the exponential
relaxation of floating probes is also proportional to � (not
shown). Hence, the relevant time scale for probe motion is
set by �, and internal time scales (such as given by
vibrations) appear irrelevant.

In a true liquid, the viscosity is independent of the mass
of an object sinking in the system. However, the viscosities
of our granular liquids exhibit a surprising dependence on
the probe mass [Fig. 4(b)]. Moreover, we found that the
precise form of �ðMÞ depends strongly on H and weakly
on the measurement depth, z. The detailed rheology is
complicated and we leave a detailed study to further work.

In Fig. 5(a) we plot the measured viscosity for a single
probe (M ¼ 59 g,D ¼ 30 mm) as a function of z for three
values of H (50, 60 and 70 mm). These viscosities are
obtained by measuring zðtÞ and then invoking Eq. (2) to
calculate the effective viscosity. From Fig. 5(a) it is appar-
ent that the viscosity depends on the filling height, H.
Moreover, the viscosity for a given filling height changes
very little with the probe depth, which is consistent with
our observation that the trajectory of light probes evolves
exponentially over a substantial range. Clearly, the strong
dependence onH and the weak dependence on z rules out a
picture in which the viscosity simply depends on the
distance to the flowing zone.
Nonlocal flow rule.—Even though the flow and strain

rates near the free surface are very small, they are not zero
[6,11,12]. It is therefore instructive to ask if the probe

FIG. 4 (color online). (a) Probe velocity 13 mm below the
surface as a function of disk rotation speed �. Red stars: H ¼
60 mm, M ¼ 77 g, D ¼ 18 mm. Blue diamonds: H ¼ 50 mm,
M ¼ 46 g, D ¼ 18 mm. Purple squares: H ¼ 60 mm, M ¼
48 g,D ¼ 18 mm. Green crosses:H ¼ 60 mm,M ¼ 86 g,D ¼
18 mm. Orange triangles: H ¼ 60 mm, M ¼ 46 g, D ¼ 18 mm
with a probe immersed at a radius of 15 mm away from the
center. The line has slope 1. (b) Rescaled viscosity, ��, at z ¼
50 mm as a function of probe mass for D ¼ 40 mm, H ¼
60 mm. The line is a guide to the eye corresponding to a power
law with exponent �1:5.

FIG. 5 (color online). (a) Viscosity as a function of probe
position for a probe with M ¼ 59 g, D ¼ 30 mm and H ¼ 50,
60 and 70 mm (lower orange curve, middle red curve and upper
blue curve, respectively). (b) The variation of the strain rate
@z!p with z for H ¼ 50, 60 and 70 mm. Inset: !p as a function

of the height above the spinning disk. Curves are of the form
!pðzÞ �!pðz ¼ HÞ � expð� ðz=�Þ1:5Þ, with � ¼ 9:5, 11.5 and

13 mm, respectively.

FIG. 3 (color online). Exponential approach to equilibrium
depth as demonstrated by sinking probes (red crosses) and rising
probes (blue diamonds) for M ¼ 40 g, D ¼ 40 mm, � ¼
0:1 rps and H ¼ 50 mm (a) and H ¼ 60 mm (b).
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motion is determined by the local residual flow near the
probe. To answer this question we will compare the way
the viscosity depends on H and z [Fig. 5(a)] to the way the
local strain rate varies with H and z. For domelike shear
bands, the strain in the region above the center of the disk is
torsional [12], and so the strain rate varies as (@z!jr¼0).

We have measured the precession rate, !pðzÞ :¼
!ðzÞjr¼0=�, by inserting tiny vanelike probes in the center
of the grain flow and observing the rotation of the probe
with a rheometer. The resulting precession rates,!pðzÞ, are
shown in Fig. 5(b) for H ¼ 50, 60 and 70 mm, and are in
good qualitative agreement with earlier magnetic reso-
nance imaging (MRI) measurements and simulations
[12]. Our larger measurement range allows us to establish
that !pðzÞ approaches the surface precession rate, !pðz ¼
HÞ, faster than an exponential but slower than a Gaussian,
and our results are fitted well by an expression of the form
!pðzÞ �!pðz ¼ HÞ ¼ !pðz ¼ 0Þ expð� ðz=�Þ1:5Þ, where
!pðz ¼ 0Þ captures slip near the bottom disc, and the

characteristic length scale � is of order 10 mm.
By either differentiating this expression, or by numeri-

cally differentiating the measured data, we can determine
@z!pðzÞ: the result is shown in Fig. 5(b). Clearly, the local

strain rate and �ðzÞ are poorly correlated—while the for-
mer changes over four decades for H ¼ 70 mm, the latter
changes over less than half a decade.

Conclusion and outlook.—By applying localized shear
to a container of glass beads we have created a granular
fluid with unusual properties. First, our granular fluid does
not exhibit the glassy behavior typical of granular media
that are agitated by other means such as tapping, vibra-
tions, oscillatory shear or gas-fluidization [22–25].
Moreover, the characteristic time scale is simply set by
the inverse driving rate, 1=�. We speculate that the appli-
cation of steady shear does not allow for caging and other
typical glasslike behavior away from the shear zone, but
instead leads to fluidization throughout the material.

Second, the drag forces on the intruder are simply
proportional to the velocity. This differs from the behavior
observed during the formation of impact craters [26,27]
and from earlier observations of slowly dragged intruders
[20,21]. Third, our granular fluid does not exhibit a finite
yield stress. The disappearance of the yield stress in the
presence of distant flow suggests that the stress and strain
tensor are colinear, consistent with recent simulations [16],
but in strong contrast to the usual Mohr-Coulomb phe-
nomenology [5].

Finally, the local rheology of the material is set by the
flow in the stirred region, not by the local residual (creep)
flow. We suggest that random grain motion in the flowing
zone leads to grain agitations even far away from the flow,
and that these agitations generate the liquidlike behavior.
Hence, the rheology is nonlocal: the relation between
applied stress and observed strain rate in one location

depends on the strain rate in another location. Whether
this is similar to observations of nonlocal rheology recently
observed in emulsions [14] is at present an open question.
We thank J. Mesman for technical assistance and M.

Cates for discussions.
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