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We investigate the influence of the addition of polymer chains on the effective interaction between star

polymers, as a model for the depletion potential in ultrasoft mixtures. The effects of size ratio and chain

polymer concentration on the chain-modified star-star interactions at good (athermal) solvent conditions

are investigated. For both hard sphere mixtures and colloid-nonadsorbing polymer mixtures the range of

the depletion interaction increases with the size ratio. For the systems at hand, the range of the depletion

potential is insensitive to the size of the depletant polymer. The physical origin of this and the associated

effects, as well as a mapping of the mixtures onto a one-component system, are discusssed.
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The capability to tune the interactions between colloidal
particles from short-range repulsions to short-range attrac-
tions has become a valuable tool for the study of funda-
mental and practical problems in soft matter physics. The
question is of high relevance to recent and ongoing work
on cluster formation and stability [1], dynamical arrest [2],
and gelation [3]. In most cases, these interactions are
effective in the sense that microscopic degrees of freedom
have been averaged out through a coarse-graining proce-
dure [4]. A typical example of that is the introduction of the
depletion potential Vdep. In the scope of the coarse-grained

approaches, the best known depletion model is that of
Asakura and Oosawa (AO), in which both the range and
strength of Vdep can be precisely tuned by varying the

polymer-to-colloid size ratio and the polymer concentra-
tion [5,6]. By using this simplified, one-component de-
scription, many insights have been gained about the
equilibrium phase behavior of colloid-polymer mixtures
[7,8]. However, when interacting polymers are considered,
the AO model breaks down as a result of the sensitivity of
Vdep to variations in the direct interactions among the

components of the system [9,10]. It is to be expected that
a new range of possibilities emerges when the big hard
colloids are replaced by soft ones; however, the AO model
is still the paradigm serving as the guiding prototype in this
context.

In recent years, the study of particles interacting via soft
potentials, which are realized by, for example, micelles,
star polymers, dendrimers, or microgel particles, has
gained a lot of attention. In analogy with hard-core colloi-
dal systems, the depletion mechanism has been also intro-
duced to rationalize the effect of short-range attractions on
suspensions of soft particles [11–13]. For example, in
block copolymer micellar suspensions, depletion forces
affect not only the intermicellar packing but also the intra-
micellar one, and they can also induce the disordering of

ordered microstructures [14,15]. In multiarm star polymer
solutions [16–18], osmotic forces due to the addition of
small linear polymers lead to the formation of thermody-
namically stable star clusters at the low star density regime,
while at high star density they cause melting of the dense
glassy state [19,20]. These findings provide physical
mechanisms for tailoring the equilibrium and flow proper-
ties in a wide range of ultrasoft particle mixtures. From the
theoretical point of view, they motivate us towards a better
understanding of the depletion potential for such systems.
In this Letter we consider the effective interaction between
highly versatile models of soft colloids, i.e., star-polymers,
resulting after the addition of small polymer chains by
using coarse-grained representations of their mutual inter-
actions [16,21–24].
In its simplest realization, the system of interest consists

of Ns ¼ 2 star polymers and Nc chains enclosed in a
volume V, which define the partial number densities �s ¼
Ns=V ! 0 and �c ¼ Nc=V. The star-chain size ratio is
given by � ¼ �c=�s where �i is the so-called corona

diameter, which scales as �i ’ ð4=3ÞRðiÞ
g (i ¼ s, c), with

RðiÞ
g the corresponding radius of gyration [21]. By choosing

the center of the stars and the middle monomer of the
chains as effective coordinates, the coarse-grained inter-
actions between all components display a ultrasoft loga-
rithmic dependence at short distances and crossover to
exponentially decay at large ones. More explicitly, the
effective interaction between two star-polymers whose
centers are held at distance r apart reads as [16,17]:
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where f is the functionality (number of arms) of the stars
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and � ¼ ðkBTÞ�1 with kB the Boltzmann constant and T
the temperature. Similarly, the effective interaction be-
tween two chains is given by [25,26]

�VccðrÞ ¼ 5
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with ��c ¼ 1:03, which guarantees the correct value of the
second virial coefficient of a polymer solution. For the
cross interaction between stars and chains we have [27]

�VscðrÞ ¼
���ðfÞ lnð r

�sc
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where �sc ¼ 1
2 ð�s þ �cÞ, �ðfÞ ¼ 5
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ðf3=2 þ 23=2Þ� and v0 is the excluded volume parameter.
The latter one appears as a result of applying Flory-type
arguments for the overlapping monomer density profiles
%iðrÞ (i ¼ s, c), which can be evaluated on the basis of the
Daoud-Cotton blob model [25–28]. The constants K and
v0 are estimated by requiring continuity of both VscðrÞ and
its first derivative at r ¼ �sc. The general scheme used to
evaluate VscðrÞ is consistent for arbitrary f and size ratio
� ¼ �c=�s, independently of the degrees of polymeriza-
tion of the star and the chain; the only dependence on those
comes implicitly through �s and �c.

We are interested in the effective interaction between
star polymers immersed in a bath of smaller chains. From
this perspective, the stars can be described by a renormal-
ized, chain-modified effective potential Veff

ss ðrÞ in which
the degrees of freedom of the chains have been traced out.
The simplest way to achieve this mapping is to employ the
inversion of the full, two-component solution for the star-
star radial distribution function gssðrÞ in the limit of low
star density [29]. Once gssðrÞ is known by solving the
Ornstein-Zernike (OZ) equations with the Rogers-Young
closure, the effective star-star potential can be calculated as
�Veff

ss ðrÞ ¼ � ln½gssðr; f; �; �s ! 0; �cÞ�. By construction,
this chain-modified interaction potential leaves both the
partial correlation function gssðrÞ and the structure factor
SssðkÞ invariant.

In Fig. 1 some results for the effective star-star potential
from the inversion procedure are displayed for different
values of �. As expected, the increase in �c reduces the
range of repulsion and eventually leads to the emergence of
an attractive well in Veff

ss ðrÞ. It can be seen that, contrary to
the AO case, the depth of attractive well behaves non-
monotonically with the size of the chains: at high enough
but equal chain density the well becomes deepest at the
intermediate size ratio, while, at the same time, its mini-
mum appears to be located roughly at the same position
independently of �. This feature is also noticeable when we
focus our attention to the induced depletion potential
VdepðrÞ ¼ Veff

ss ðrÞ � VssðrÞ: for all conditions considered

in Fig. 1, VdepðrÞ displays the same qualitative behavior

irrespective of the size and concentration of the depletant
polymers. The range of VdepðrÞ, �dep, changes very little

with �, which is counterintuitive, as it would be normally
expected that �dep grows with the size ratio (and, in the

case of the AO model, in a linear fashion).
To check the validity of these results we use as an

alternative approach, the superposition approximation
(SA) [30]. Here, the density profile of the chains induced
by the presence of two stars at separation r is approximated
by the product of the two chain-density profiles surround-
ing a single star polymer. The latter is proportional to the
star-chain radial distribution function, gscðr; f; �; �s !
0; �cÞ, also readily available from the solution of the OZ
equations. In addition, standard NVT Monte Carlo (MC)
simulations were performed on the coarse-grained two-
component system, see Eqs. (1)–(3), by placing two stars
in a reservoir of chains, and measuring the depletion force
FdepðrÞ ¼ �rVdepðrÞ. A comparison of results from these

three different approximations is shown in Fig. 2. The three
methods yield quite good agreement and, as �c and �
increase, the SA leads to better agreement with the simu-
lation data than the OZ inversion. This implies that the
cross correlation between chains arising from their inter-
action VccðrÞ is weak enough, so that we can still assume
that the presence of a second star leads to an overall chain-
density profile that is well approximated by the product of
those originated from two isolated stars. Application of
more sophisticated techniques based on a second-order
expansion of a two-component density functional yields
essentially identical results with those reported above.
To understand the physical origin of these unusual fea-

tures, we look in detail at the chain-density profile, �cðrÞ
around a single, fixed star, see Fig. 3. The depletion range
can be estimated from there as �dep ffi 2�, where � is the
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FIG. 1 (color online). Upper row: Chain-mediated effective
star-star potential as obtained by inversion of the OZ equation
with f ¼ 18 for different size ratios and chain densities. The
pure star-star potential VssðrÞ is represented by the dashed lines.
Bottom row: Corresponding depletion potentials are indicated by
open symbols while the continuous lines result from fitting to
Eq. (4).
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length scale at which �cðrÞ reaches its asymptotic, bulk
value. To begin with, we consider �cðrÞ at the limit of very
low chain density, which is proportional to the Boltzmann
factor of the star-chain cross interaction, �cðrÞ ffi
�c exp½��VscðrÞ�. At this limit, as � increases, the thick-
ness of the depletion layer becomes only slightly larger and
clearly not in proportionality to �. Thus, for the system at
hand, �dep is just slightly influenced by the size of the

depletant polymer chain, even at the limit �c ! 0. For the
case � ¼ 0:1 there is no significant change in �cðrÞ, and
therefore neither in the size of the depletion zone, as the
chain number density �c increases. Concomitantly, only

the strength of VdepðrÞ grows, as a consequence of the

increase in the osmotic pressure �ð�cÞ of the chains. For
larger � the size of the depletion zone decreases as �c

increases, as a consequence of the softness of the star: the
chains access a region closer to the center of the star, due to
the repulsive interactions with other chains. This penetra-
bility of the star causes the shrinkage of the depletion layer
around it and together with the stronger osmotic effects
have as consequence a deeper and shorter-ranged depletion
potential. Finally, since VdepðrÞ itself depends on VscðrÞ and
VccðrÞ, but not directly on VssðrÞ, an increase of the func-
tionality f at fixed size ratio � renders VscðrÞ more repul-
sive and therefore the depletion zone around each star
widens. This effect results in a larger �dep and a deeper

attraction, for higher functionality stars, see Fig. 2.
Contrary to colloid-polymer mixtures, the range of the
depletion potential is primarily determined by the nature
of the depleted particles themselves and not by the
depletants.
The interaction potentials given by Eqs. (1)–(3) have

been recently used to study the phase behavior in a two-
component description of star-linear mixtures [31]. For
low and intermediate functionalities, f & 32, evidence
was found showing star-cluster formation as a precursor
stage for a fluid-fluid demixing transition. This behavior
resembles the one predicted via a one-component model of
the star suspension, for which one attractive contribution
VattðrÞ was added to VssðrÞ, and which had the form of a
Fermi distribution [32–35]:

VattðrÞ ¼ � C

exp½ðr� AÞ=B� þ 1
: (4)

The above form and the describing parameters were, how-
ever, introduced ad hoc, arguing on general grounds that
depletion would be a mechanism to induce such attrac-
tions. Although another model could be used, this Fermi-
like model (FLM) has been shown to provide a rather
convenient parametrization of generic attractive contribu-
tions, which allows for changing the characteristics (range
and depth) of the latter; the parameters A and B control the
position and width of the well potential and C its amplitude
[32,33]. It is thus tempting to see whether star-linear
mixtures can be described by this model.
For the system at hand, the FLM indeed describes re-

markably well the depletion interactions, as can be seen in
the lower panels of Fig. 1. Representative results for the
dependence of the parameters A, B, and C on the chain
density �c are shown in Fig. 4 for different size ratios � and
functionalities f. It is immediately seen that the length
scales show a weak dependence on the size ratio �: by
increasing � by as much as a factor five (from 0.1 to 0.5),
we obtain very weak changes in the parameters A and B, of
order 10% at any given chain density. As the chain density
increases, the parameters A and B decrease and the trend
becomes opposite to what conventional wisdom asserts:
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FIG. 2 (color online). Depletion force between two stars im-
mersed in a bath of smaller chains at different functionalities,
size ratios, and chain densities.
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FIG. 3 (color online). Upper panel: the Boltzmann factors
BscðrÞ ¼ exp½��VscðrÞ� of the star-chain effective interaction
potential. Lower panels: the normalized density profile of chains
around one isolated star with f ¼ 32. Continuous curves were
calculated by solving the OZ equation while filled symbols
correspond to results from MC simulations. The curves for �c ¼
0 are the Boltzmann factors BscðrÞ.
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long polymers induce shorter-ranged depletion potentials
than short ones, in strong contrast with the AO case. On the
other hand, the strength of VdepðrÞ grows, as expected, with
�c, due to the increase in �ð�cÞ.

In summary, in this Letter we describe some remarkable
characteristics of the depletion potential in a model soft
mixture. We found its range to show a very weak depen-
dence not only on the chain density �c but also on the size
ratio �. This is counterintuitive, since one would have
expected the range to increase as the size of the depletant
increases, and it is the result of the softness and penetra-
bility characterizing the components and the ensuing ef-
fective interaction potentials of the system at hand. These
two characteristics are not peculiar for star polymers but
they are present in many other polymer-based colloidal
systems. Microgels, micelles, polymer-grafted nanopar-
ticles, dendrimers and, in general, hyperbranched poly-
mers, are highly deformable systems whose topology can
be well described through a core and shell structure. The
size and softness of the latter one can be easily tuned by
changing, for example, the cross-linking or the charge
(microgels), the aggregation number (micelles), the grafted
density (nanoparticles), and the generation number or the
spacer between generations (dendrimers). We expect our
results, which are based on the penetrability of the soft
shell, to hold as long as the latter is thick enough to
accommodate the chains in their full extent. As the range
of the depletion potential exceeds that needed for phase
separation and cannot be reduced by employing smaller
depletants, we anticipate macroscopic, demixing (‘‘liquid-
gas’’) transitions to take place for this family of systems.
Therefore, at sufficiently high soft-colloid concentrations,
they are expected to undergo the recently reported ‘‘ar-
rested spinodal decomposition’’ [3,36], which constitutes a
novel route to gelation. The mapping of the original full
ultrasoft-colloidal mixture on the characteristic parameters

of the FLM effective system turns this into a more tractable
problem.
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