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We analyze the interaction of a nanomagnet (ferromagnetic) with a single photonic mode of a cavity in

a fully quantum-mechanical treatment and find that exceptionally large quantum-coherent magnet-photon

coupling can be achieved. Coupling terms in excess of several THz are predicted to be achievable in a

spherical cavity of �1 mm radius with a nanomagnet of �100 nm radius and ferromagnetic resonance

frequency of �200 GHz. Eigenstates of the magnet-photon system correspond to entangled states of spin

orientation and photon number, in which over 105 values of each quantum number are represented;

conversely, initial (coherent) states of definite spin and photon number evolve dynamically to produce

large oscillations in the microwave power (and nanomagnet spin orientation), and are characterized by

exceptionally long dephasing times.
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Strong coupling between light and electronic transitions
[1–7] permits coherent transfer of quantum information
between the two systems, as well as a host of exotic
phenomena, including slow light [8,9], lasing without
population inversion [10,11], and index enhancement via
quantum coherence [12,13]. Achieving strong coupling
between light and electronic transitions in solids has been
challenging, due to the shorter coherence time of electrical
dipole transitions in solids compared to atoms; however,
strong coupling in a single quantum dot-semiconductor
microcavity system [14] has been demonstrated with a
coupling strength �80 �eV. Often these investigations
in solids focus on electric dipole (orbital) transitions over
magnetic (spin) transitions, whose typical oscillator
strengths are estimated [15] to be smaller by a factor of
the fine structure constant, �1=137. Paramagnetic spin
systems in solids, however, appear intrinsically more quan-
tum coherent than orbital coherent states [16,17], and
collective spin-photon effects (such as superradiance
[18,19], including in molecular magnets of �10 spins
[20]) are known. Yet to be explored are the coherent
strong-field properties of ferromagnetic systems. In ferro-
magnets, the exchange interaction can cause a very large
number of spins to lock together into one macrospin with a
corresponding increase in oscillator strength. Therefore,
for nanomagnets with �100 spins or more, the
electronic-photonic coupling strength may exceed that of
a two-level electronic orbital transition occurring by elec-
tric dipole coupling, while still maintaining long coherence
times (ferromagnetic nanomagnet oscillators have been
demonstrated [21,22] with Q factors in excess of 500).
Such ferromagnetic oscillations can be coherently driven
by electrical spin currents [22–27], and thus a single
nanomagnet-photonic mode system provides an efficient
method of strongly coupling electronic, magnetic and pho-
tonic degrees of freedom.

Here, we calculate the strong-field interactions between
a small ferromagnet (nanomagnet) and light, and find a

dramatic enhancement of spin-photon coupling relative to
paramagnetic spin systems, yielding coupling much larger
than found by coupling light to orbital transitions. As
shown schematically in Fig. 1, the oscillator is a spherical
nanomagnet with a radius rm possessing a very large spin
S. This spin, arising from an assembly of N electron spins
(for rm � 100 nm, N � 109) exchange locked in parallel,
can be treated as a macrospin. This nanomagnet is placed a
distance d from the center of the cavity for more efficient
coupling to the cavity mode. High frequency precession of
the nanomagnet at a frequency resonant with the cavity is
achieved by tuning a uniform magnetic field B0 along
the z axis of the cavity. We find for a realistic cavity size
(�1 mm) and resonance frequency (�200 GHz) that pho-
tonic coupling terms between neighboring spin states when
the cavity is empty of photons are comparable in size to
those of quantum dot electric dipole transitions
(�100 �eV) [14]. This spin-photon coupling leads to ei-

FIG. 1 (color). Schematic of the nanomagnet-cavity system
with a spherical nanomagnet of radius rm placed at a distance
of d from the center of a cavity of radius R. A uniform magnetic
field, B0, applied along the z axis causes precession of the
nanomagnet macrospin, S, with frequency of !, in resonance
with TM mode of the cavity.
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genstates of the mixed system which extend over 105

values of spin and photon quantum numbers, as shown in
Fig. 2. We also find an unexpected regime, in which the
system is initialized with (1) no photons and (1) the nano-
magnet in its high-energy (antiparallel) orientation to the
magnetic field, whereby large oscillations in spin number
and photon number result (Fig. 3), corresponding to spin-
photon coupling strengths between neighboring spins
�160 meV (�40 THz). These large oscillations in spin
and photon number (�105 quanta of each) on �s time
scales are characterized by long dephasing times (Fig. 4).

The total Hamiltonian of the system incorporates the
magnetic H and electric fields E of the cavity and the
magnetization M of the nanomagnet [15],

H ¼ 1

2

Z
½�0jHj2 þ �0jEj2 þ�0ðH �MÞ�d3r: (1)

The first two integrands on the right-hand side of Eq. (1)
correspond to the free field Hamiltonian, whereas the third
integrand describes the interaction Hamiltonian of the
nanomagnet-cavity system. Spherical wave expansion of
the cavity field [28] and renormalization of the field

strength coefficients to satisfy ½alm; ayl0m0 � ¼ �ll0�mm0 yield

the interaction Hamiltonian

H I ¼
�X
l;m

�ðTEÞ
l aðTEÞlm

Z
S
M � ðr� ulmÞd3r

þX
l;m

�ðTMÞ
l aðTMÞ

lm

Z
S
M � ulmd3r

�
þ H:c: (2)

where the basis functions for spherical waves are given by
ulm. Moreover, the coupling constants for transverse elec-
tric, and transverse magnetic modes of the field for angular

momentum l are �ðTEÞ
l and �ðTMÞ

l , respectively.

A nanomagnet acting as a macrospin, as seen experi-
mentally in nanomagnet oscillators of roughly this size
[22], has a magnetization M ¼ �=V ¼ �Sðgs�B=@VÞ �

�ðrm � jr� djÞ, where �ðxÞ is the Heaviside step func-
tion. As one example, a spherical nanomagnet of iron,
radius rm ffi 108 nm, corresponds to 109 iron spins ex-
change locked in parallel.
For the spherical wave expansion of the magnetic field,

all components of the field vanish if l ¼ m ¼ 0 (no radiat-
ing monopoles). For a magnetic field applied in the ẑ
direction, the microwave emission of the nanomagnet is
due to the oscillating components of the magnetization
Mx;y perpendicular to the radial direction (Fig. 1), and

thus the cavity TE modes (magnetic field pointing in the
radial direction) do not couple to the nanomagnet. The
basis functions for the lowest-frequency (dominant) dipole
TM mode (l ¼ 1) are given by u1m ¼ j1ðkrÞY1;1;mð�;�Þ.

FIG. 2 (color). Wave functions of the nanomagnet-cavity sys-
tem as a function of photon number, n, centered about n0 ¼
4�=3 ¼ 6:666 67� 108 for N ¼ 109 spins: (a) ground state with
a width of roughly 5� 104 photons (or equivalently spin quan-
tum numbers ms), (b) 1st, (c) 2nd, and (d) 150th excited states.

FIG. 3 (color). (a) Amplitude of a coherent state of nano-
magnet/photon system shown as a function of photon number
n. The large oscillations of this coherent state about n0 ¼
6:667� 108 occur between photon numbers �267 000 (Filled
line), andþ267 000 (Dashed line) with a period of T ¼ 4:74 �s.
(b) Time evolution of the Zeeman energy of the nanomagnet
(Red line), and transverse magnetic mode of the cavity field
(Green line) at z ¼ d in this coherent state representation.

FIG. 4 (color). Dephasing time of the coherent state obtained
by a Gaussian fit to the peak values of the correlation function
(inset) at successive time intervals.
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The vector spherical harmonic Y1;1;m is expanded using

the helicity basis vectors êm [which form a spherical

tensor of rank 1, i.e., ê� ¼ �ðx̂� iŷÞ= ffiffiffi
2

p
, ê0 ¼ ẑ].

The spin operator of the nanomagnet in the helicity basis,
S ¼ 1ffiffi

2
p ðSþê� � S�êþÞ þ Szê0, in terms of the spin

raising and lowering operators [S�jls; msi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðls �msÞðls �ms þ 1Þp jls; ms � 1i]. Introduction of this
total spin operator to Eq. (2), as well as replacing the field
strength coefficients of the TM mode with the correspond-
ing annihilation (creation) operators, yields a fully quan-
tum Hamiltonian

H � ¼ @!�

�
ay�a� þ 1

2

�
� g�B��ða�Sþ þ ay�S�Þ

þ g
�B

@
B0Sz; (3)

in which the spin interacts only with a single photon mode
�. Modes of higher l would be out of resonance because of
the cavity quantization, and energy nonconserving terms
with negative helicity have been dropped (relying on the
rotating wave approximation [29]). The nanomagnet-
photon coupling constant, ��, is found to be

�� ¼ j1ðkdÞ
8@jj1ðy1�Þj

�
1� lðlþ 1Þ

y21�

��1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3@!��0

�R3

s
; (4)

where y1� is the �-th zero of jrj1ðkrÞj0 satisfying the

conditions for the field of TMmode at the cavity boundary.
The mode frequency !� is related to the radius of the

cavity R with k1� ¼ !1�=c ¼ y1�=R. The cavity is in

resonance with the energy level splitting of the spins
whenever @!� ¼ g�BB0, when any spin-flip up (down)

process of the nanomagnet results in an absorption (emis-
sion) of a cavity photon. An applied uniformmagnetic field
of B0 ¼ 7 T, corresponding to a precession of the macro-
spin with a frequency of �200 GHz, will cause the nano-
magnet spins to be in resonance with a cavity volume of
1:25 mm3. We assume the lowest TMmode of the cavity is
in resonance with the spin-flip transitions of the nanomag-
net, so as higher-energymodes will not be in resonance, the
subscript � will be dropped from Eq. (3).

The eigenstates of the nanomagnet’s macrospin are si-
multaneous eigenstates of S2 and Sz given by jls; msi,
where jmsj 	 ls 	 N=2. Part of the macrospin approxima-
tion is the assumption that ls is fixed, and we assume the
maximal spin state, ls ¼ N=2. The total excitation number
� ¼ nþms, where n is the photon number of the
nanomagnet-cavity system, is conserved by the
Hamiltonian of Eq. (3). For an initial configuration of the
macrospin pointing antiparallel to the static fieldB0 and no
photons in the cavity, � ¼ N=2, the basis states of the spin-
photon mode system jn;msi can be indexed either solely
by n or by ms: jn; �� ni or j��ms;msi. The structure of
these basis states is similar to those of the Dicke model [1]
for N independent atomic spins, wherein ls is the coopera-

tion number of the paramagnetic collection of spins. The
Hilbert space of N independent spins includes the states of
a macrospin corresponding to ls ¼ N=2. The assumption
� ¼ N=2 corresponds to the initially fully excited atomic
system in the Dicke model, with no photons in the cavity.
However, for a real nanomagnet (like in our case), ele-
ments of the Hilbert space with ls � N=2 are split off in
energy due to the exchange interaction.
To proceed, we drop the redundant reference to ms, so

jn; �� ni ! jni, and

H ¼ X2�
n¼0

E0jnihnj � 	ðnÞ½jnþ 1ihnj þ jnihnþ 1j�;

(5)

in the Fock space, where the constant energy coefficient E0

term and the coupling strength 	ðxÞ are defined as

E0 ¼ @!ð�þ 1=2Þ; 	ðnÞ ¼ @�g�Bðnþ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� n

p
:

(6)

For 2� ¼ N, the magnet-microwave mode coupling,
	ðnÞ, changes over a range of 0.10 MHz-4.1 THz
through all possible n. 	ðnÞ acts like a driving force for a
fictitious particle moving between sites labeled by n,
so j0i ! . . . ! jn� 1i ! jni ! jnþ 1i ! . . . ! j2�i.
The solutions n0 of 	

0ðnÞjn0 ¼ 0 are equilibrium points in

n, and there is one at n0 ¼ ð4�� 1Þ=3. The coupling in

terms of ms is 	ðmsÞ ¼ @�g�Bð��ms þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þms

p
,

with an equilibrium point of m0 ¼ ð1� �Þ=3.
For transitions from jn;msi which conserve energy and

in which a photon is emitted, the rate of emission Rn /P
8�jh�jayS�jn;msij2, where j�i represents the possible

final states of the system. Rn reaches its maximum value of
4AðN=3Þ3 for the equilibrium point m0 (or n0) in the large-
spin limit; thus, n0 and m0 are the photon number and spin
number, respectively, where the nanomagnet-cavity system
exhibits superradiance [1].
The eigenfunctions of the nanomagnet-cavity Hamilton-

ian given in Eq. (5) can be expanded as�j ¼
P2sz

n0 c n0
j jn0i.

For a large-spin nanomagnet, the eigenfunctions of the
Hamiltonian can be found in the continuum limit, corre-
sponding to replacing c n

j ! c jðx ¼ n"Þ and keeping

terms up to Oð"3Þ, yielding

	ðxÞ d
2c jðxÞ
dx2

þ d	ðxÞ
dx

dc jðxÞ
dx

þ
�
2	ðxÞ � d	ðxÞ

dx
þ 1

2

d2	ðxÞ
dx2

þ Ej

�
c jðxÞ ¼ 0; (7)

with c jð0Þ ¼ c jð2szÞ ¼ 0. The lowest energy eigenvalues

Ej and eigenfunctions c jðxÞ of this differential equation,
shown in Fig. 2, can be obtained in the WKB approxima-

tion from SðEjÞ¼ ð1=2�ÞH ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ej�VeðxÞ=	ðxÞ�

q
dx¼ jþ 1

2 ,

where the effective potential is VeðxÞ ¼ 	0ðxÞ þ
	02ðxÞ=4	ðxÞ � 	0ðxÞ=2	ðxÞ � 2	ðxÞ. The ground state
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c ðxÞ is extended over a broad range of x (and thus ms and
n) because VeðxÞ is smoothly varying (due to large �); in
the limit of large S and large �, from the functional form of
VeðxÞ, the width of the ground state can be determined from
ð�nÞ2=n0 � 1.

Coherent states, characterized by large oscillations

in n about n0, can be expressed �ðx; tÞ ¼Pj0
j¼0 Aje

�iEjt=@c jðxÞ, where �ðx; t ¼ 0Þ is a Gaussian

wave function centered at x0 ¼ 6:664� 108. Summation
over the first 150 states describes a coherent state oscillat-
ing over a range of 5:34� 105 photons with a period of
T ¼ 4:74 �s, as shown in Fig. 3(a). The large oscillations
in Zeeman energy of the nanomagnet (� � B0), and in the
cavity photon’s magnetic field amplitude BT , shown in
Fig. 3(b), emphasize the coherent nature of this state.

To explore the decoherence of this nanomagnet-photon
system, we calculate the autocorrelation, PðtÞ ¼
jh�ðtÞj�ð0Þij2. Each peak (inset of Fig. 4) represents the
maximal PðtÞ after an oscillation period T. The dephasing
due to the inhomogeneous 	ðnÞ in Eq. (5) yields an excep-
tionally long dephasing time of roughly 	 ¼ 14 s (Fig. 4);
this dephasing time approaches infinity as S ! 1. We have
also assumed an infinite Q for the cavity; for a real cavity,
the coherence of the nanomagnet will be reduced by pho-
ton leakage from the cavity. The principal effect of mag-
netic anisotropy will be to shift the precession frequency of
the nanomagnet, which can be compensated for with a
slight change in the applied magnetic field. Crystalline
magnetic anisotropy of iron will produce a small detuning
(�3� 10�10 eV) of the E0 in Eq. (5) over the range of
oscillation in Fig. 3. This detuning is much smaller than the
couplings 	ðnÞ in Eq. (5) and so will not destroy the
coherent oscillations here, although it may limit the de-
phasing times to shorter than shown in Fig. 4. A cutoff of
the dephasing times shown in Fig. 4 in real nanomagnets
will occur from spin-lattice coupling (of ms to phonons
through spin-orbit coupling). For spheres of yttrium iron
garnet (YIG) at low temperature, this spin-lattice time is
several �s [30,31], permitting observation of a full oscil-
lation cycle. The times at room temperature in YIG
(�200 ns [30]) and iron (�20 ns [32]) are too small to
observe a full oscillation; however, coherent dynamics
corresponding to a portion of the oscillation involving
�220 photons/ns, or �4400 photons for iron and 4:4�
104 photons for YIG should be observable.

The strong-field interactions between a nanomagnet of
radius 100 nm consisting of 109 spins and a spherical
cavity roughly 1 mm3 in volume in the presence of a static
magnetic field of �7 T in magnitude indicate that strong-
field coupling between magnets and light is possible, and
should substantially exceed the coupling observed in solids
between orbital transitions and light. The interaction
Hamiltonian contains magnet-microwave mode coupling
terms that can exceed several THz. Furthermore, the co-
herent states of the spin-photon coupling around the super-

radiance regime are characterized by large oscillations in
photon number n of the cavity (or equivalently, the total
spin quantum number ms of the nanomagnet) with excep-
tionally long dephasing times.
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