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We numerically study the thermoelectric transports of Dirac fermions in graphene in the presence of a

strong magnetic field and disorder. We find that the thermoelectric transport coefficients demonstrate

universal behavior depending on the ratio between the temperature and the width of the disorder-

broadened Landau levels (LLs). The transverse thermoelectric conductivity �xy reaches a universal

quantum value at the center of each LL in the high temperature regime, and it has a linear temperature

dependence at low temperatures. The calculated Nernst signal has a peak at the central LL with heights of

the order of kB=e, and changes sign near other LLs, while the thermopower has an opposite behavior, in

good agreement with experimental data. The validity of the generalized Mott relation between the

thermoelectric and electrical transport coefficients is verified in a wide range of temperatures.
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Graphene has attracted enormous interest due to its
unique electronic properties associated with the two-
dimensional (2D) Dirac-fermion excitations [1], including
its thermoelectric properties [2–4]. The thermopower and
Nernst coefficient, measuring the magnitude of the longi-
tudinal and transverse electric fields generated in response
to an applied temperature gradient, are very sensitive to the
semimetal nature of graphene. For instance, a large ther-
mopower is expected near the Dirac point as Sxx � T=EF,
while T and EF are the temperature and the Fermi energy,
respectively. This has been observed in recent experiments
[2–4], where the maximum value of thermopower reaches
90 �V=K at T � 300 K.

In a magnetic field, the electronic states of graphene are
quantized into Landau levels (LLs), as in the 2D semicon-
ductor systems displaying the integer quantum Hall effect
(IQHE) [5]. However, the Hall conductivity of graphene
obeys an unconventional quantization rule �xy ¼
4ðnþ 1=2Þe2=h, where n is an integer [6–9]. For the
conventional 2D IQHE systems, theories [10–13] predict
that when the thermal activation dominates the broadening
of LLs, all transport coefficients are universal functions of
EF=@!c and kBT=@!c, where @!c is the LL quantization
energy. Sxx shows a series of peaks near the LL energies
with height ln2ðkB=eÞ=ðnþ 1=2Þ, which is independent of
the magnetic field or temperature. The Nernst signal Sxy
oscillates about zero near the LLs and enhances as the
strength of the impurity scattering increases. The experi-
mental results on graphene agree with these asymptotic
behaviors except at the central LL, where Sxy has a peak

instead with maximum value about 40 �V=K while Sxx
becomes oscillatory [2–4]. The unusual behavior of Sxy
and Sxx near the central LL has not been understood.

While thermoelectric transports depend crucially on
impurity scattering as well as thermal activation, the study

of the disorder effect on thermoelectric transports in gra-
phene is still lacking. Another important question is to
what extent the well-known Mott relation between thermo-
electric and electrical transport coefficients [cf. Eq. (3)] is
applicable for this system. In this Letter, we carry out a
numerical study to address all the above issues. We show
that thermoelectric transport coefficients are universal
functions of the ratio between the temperature and the
disorder-induced LL width, and display different asymp-
totic behaviors in different temperature regions, in agree-
ment with experimental data. Our study also reveals that
the distinct behavior in the central LL is an intrinsic
property of the Dirac point where both particle and hole
LLs coexist. Furthermore, the generalized Mott relation is
shown to be valid for a wide range of temperatures.
We consider a rectangular sample of a 2D graphene

sheet consisting of carbon atoms on a honeycomb lattice
[14]. Besides the Anderson-type random disorder consid-
ered in Ref. [14], we also model charged impurities in
substrate, randomly located in a plane at a distance d,
either above or below the graphene sheet with a long-range
Coulomb scattering potential. The latter type of disorder is
known [15] to give a more satisfactory interpretation of the
transport properties of graphene in the absence of magnetic
fields. When a magnetic field is applied perpendicular to
the graphene plane, the Hamiltonian can be written in the
tight-binding form

H ¼ �t
X
hiji�

eiaijcyi�cj� þX
i�

wic
y
i�ci�; (1)

where cþi� (ci�) creates (annihilates) a � electron of spin �
on lattice site i. t is the nearest-neighbor hopping integral
with an additional phase factor aij due to the applied

magnetic field B. The magnetic flux per hexagon � ¼P
xaij ¼ 2�

M with M an integer [14]. For Anderson-type
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disorder, wi is randomly distributed between [�W=2,
W=2] with W as the disorder strength. For charged impu-

rities, wi ¼ � Ze2

�

P
�1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðri �R�Þ2 þ d2
p

, where Ze is the

charge carried by the impurities, � is the effective back-
ground lattice dielectric constant, and ri and R� are the
planar positions of site i and impurity �, respectively. All
the properties of the substrate (or vacuum in the case of
suspended graphene) can be absorbed into a dimensionless
parameter rs ¼ Ze2=ð�@vFÞ, where vF is the Fermi veloc-
ity of the electrons. For simplicity, in the following calcu-
lation, we fix the value of distance d ¼ 1, randomly
distribute impurities with the density as 1% of the total
sites, and tune rs to control the impurity scattering
strength.

In the linear response regime, the charge current in
response to an electric field or a temperature gradient can
be written as J ¼ �̂Eþ �̂ð�rTÞ, where �̂ and �̂ are the
electrical and thermoelectric conductivity tensors, respec-
tively. These transport coefficients can be calculated with
Kubo formula once we obtain all the eigenstates of the
Hamiltonian (in our calculation, �xx is obtained based on
the calculation of the Thouless number [16]). In practice,
we can first calculate the T ¼ 0 conductivities�jiðEFÞ, and
then use the relation [12]

�jiðEF; TÞ ¼
Z

d��jið�Þ
�
�@fð�Þ

@�

�
;

�jiðEF; TÞ ¼ �1

eT

Z
d��jið�Þð�� EFÞ

�
�@fð�Þ

@�

�
;

(2)

to obtain the finite temperature electrical and thermoelec-

tric conductivity tensors. Here fðxÞ ¼ 1=½eðx�EFÞ=kBT þ 1�
is the Fermi distribution function. At low temperatures, the
second equation can be approximated as

�jiðEF; TÞ ¼ ��2k2BT

3e

d�jið�; TÞ
d�

���������¼EF

; (3)

which is the generalized Mott relation [12,13].
In Fig. 1, we show the calculated Hall conductivity �xy

and longitudinal conductivity �xx at T ¼ 0 as functions of
the Fermi energy near the Dirac point. From Figs. 1(a) and
1(b), we observe that the results for the two different types
of disorder are very similar. The Hall conductivity exhibits
two well-quantized plateaus �2e2=h and 2e2=h, being
consistent with the quantization rule �xy ¼ 4ðnþ
1=2Þe2=h. The direct transition between the two plateaus
is accompanied by a pronounced peak in the longitudinal
conductivity �xx with the maximum value 2e2=h [17].
Remarkably, once we scale the energy with the width of
the central LL (WL), which is determined by the full-width
at half-maximum of the �xx peak, all results fall into a
single curve, though there are small deviations for �xx at
the peak tails. This is rather in accordance with the scaling
theory on the quantum Hall liquid to insulator transition

[18], as WL corresponds to an energy scale where the
electron localization length (correlation length) is compa-
rable to the system size. The scaling is further tested for
different magnetic fields and different system sizes, as
shown in Figs. 1(c) and 1(d) and Figs. 1(e) and 1(f),
respectively. We conclude that, when EF, WL � @!c �xx

and �xy are universal functions of a single-parameter

EF=WL. It is noteworthy that the universal curves shown
in Fig. 1 are for disorder strengths smaller than the critical
values, which is relevant to the experiments [2–4]. With
stronger disorder strength, an insulating state may appear
at the Dirac point [14].
In Fig. 2, we show the results of thermoelectric con-

ductivities �xy and �xx at finite temperatures. As seen from

Figs. 2(a) and 2(b), �xy displays a series of peaks near the

LL energies, while �xx oscillates and changes sign at the
LL energies. These behaviors are similar to those in the
conventional IQHE systems [12], but some important dif-
ferences exist. First, at low temperatures, the peak of �xy at

the central LL is higher and narrower than at the other LLs,
which indicates that the impurity scattering has a different
effect on the central LL and the rest LLs. Second, �xy and

�xx are symmetric and antisymmetric about the Dirac point
(zero energy), respectively, as they are even and odd func-
tions of the Fermi energy, rather than periodic functions.
We also find that, depending on the relative strength be-
tween kBT and WL, thermoelectric conductivities show

FIG. 1 (color online). Zero temperature �xy and �xx as func-
tions of the normalized Fermi energy near the Dirac point with
WL as the width of the central LL. (a) and (b) compare results for
short-range random potential (with various W) and long-range
Coulomb potential (with various rs), where the system size N ¼
96� 48 and the magnetic flux � ¼ 2�

48 . (c) and (d) compare

results for three different strengths of magnetic flux, with the
same system size N ¼ 96� 48 and the same impurity configu-
ration, where a long-range scattering potential with rs ¼ 0:4 is
assumed. (e) and (f) are for three different system sizes with
rs ¼ 0:3 and � ¼ 2�

24 .
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different universal behaviors. When kBT � WL and EF �
WL, we find that both �xy and �xx are linear in T (verified

by a log-log plot to the lowest temperature accessible by
numerics). This indicates that within the mobility edge
where extended states dominate, the diffusive transports
play important roles as in the semiclassical Drude-Zener
regime. When the Fermi energy falls deep inside the
mobility gap or kBT becomes comparable to or greater
than WL, thermal activation dominates. In this regime, �xx

assumes the Arrhenius form ð1=TÞe�EF=kBT . Meanwhile,
the heights of the peaks in �xy for all LLs saturate to a

value 2:77kBe=h, as seen from Fig. 2(c). This value
matches exactly the universal number ðln2ÞkBe=h pre-
dicted for the conventional IQHE systems in the case
where thermal activation dominates [12,13], with an addi-
tional degeneracy factor 4.

To examine the validity of the generalized Mott relation,
we compare the above results with those calculated from
Eq. (3), as shown in Fig. 2(d). The Mott relation, which
was historically derived from the semiclassical Boltzmann
equation, is a low-temperature approximation and predicts
that thermoelectric conductivities are linear in tempera-
ture. This is in agreement with our low-temperature results.
At high temperatures, thermoelectric conductivities devi-
ate from the linear-T dependence. However, if we take into
account the finite temperature values of electrical conduc-
tivities, the Mott relation still predicts the correct asymp-
totic behavior. This is due to the fact that the conductivities
display universal dependence on EF=kBT, either a power
law or an exponential function in different regimes, which

can all be captured by the Mott relation. This proves that
the generalized Mott relation is asymptotically valid in
Landau-quantized systems, as suggested in Ref. [12].
Given the single-parameter scaling behaviors of the T ¼

0 conductivities, it is straightforward to show with Eq. (2)
that �ji and �ji at finite temperatures are universal func-

tions of WL=kBT and EF=kBT, or

L ðEF; TÞ ¼ L0SLðEF=WL;WL=kBTÞ; (4)

where L stands for one of the transport coefficients and
SLðx; yÞ is a universal function. We can directly verify the
universal relations Eq. (4). Here, we pick a temperature
kBT ¼ WL, corresponding to SLðx; 1Þ, and compare the
results around the central LL for different disorder
strengths and different magnetic fields, as shown in
Fig. 3. Indeed, once we scale the Fermi energy with WL,
�xx and �xy as functions of EF=WL collapse into the same

corresponding curves.
We note that the asymptotic behaviors and the values of

the peak heights of our calculated �xx and �xy are in

agreement with the experimental results [4]. We further
calculate the thermopower Sxx and the Nernst signal Sxy
using [12]

Sij ¼ Ej=riT ¼ X
k¼x;y

½�̂�1�ik�kj; (5)

which are directly determined in experiments by measur-
ing the responsive electric fields. The results for the central
three LLs are shown in Fig. 4. Sxy (Sxx) has a peak at the

central LL (the other LLs), and changes sign near the other
LLs (the central LL). The height of the Sxx peak at n ¼ �1
LL is found to be 37 �V=K for kBT ¼ 0:2WL and
56 �V=K for kBT ¼ 0:5WL, which is in agreement with

FIG. 2 (color online). Thermoelectric conductivities at finite
temperatures. (a) and (b) show �xyðEF; TÞ and �xxðEF; TÞ as

functions of the Fermi energy at different temperatures.
(c) shows the temperature dependence of �xyðEF; TÞ and

�xxðEF; TÞ for certain fixed Fermi energies. (d) compares the
results from numerical calculations and from the generalized
Mott relation at two characteristic temperatures, kBT=WL ¼
0:05 and kBT=WL ¼ 1. The other parameters are taken to be
N ¼ 96� 48, � ¼ 2�=48, and rs ¼ 0:3 with WL=t ¼ 0:0195.

FIG. 3 (color online). Universal behaviors of �xx and �xy near
the central LL at kBT=WL ¼ 1. (a),(b) show them as functions of
the renormalized Fermi energy for three disorder strengths, and
(c),(d) compare results for different magnetic fields. The pa-
rameters chosen are shown in the figure.
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the maximummeasured value 48 �V=K [4]. This is also in
agreement with the theory predication that, in the absence
of disorder and at low temperatures, the peak value of Sxx is
dominated by �xy=�xy and takes a universal value ð2=3Þ�
ln2kB=e � 40 �V=K. In the presence of disorder and at
finite temperatures, the peak value is slightly bigger and
the peak position is shifted toward EF ¼ 0. At zero energy,
both �xy and �xx vanish, leading to a vanishing Sxx.

Around the zero energy, because �xx�xx and �xy�xy

have opposite signs, depending on their relative magni-
tudes, Sxx increases or decreases when the Fermi energy is
increased passing the Dirac point. In our calculations, we
find that the second term is always dominant, which is
different from the experimental observation. This might be
related to the unexpected large value of �xx � 6e2=h ob-
served in experiments. Figure 4 actually shows the result
when we rescale �xx to the experimental value instead of
the theoretical result 2e2=h. We can then obtain the same
asymptotic behavior as in experiments for kBT ¼ 0:2WL.
On the other hand, Sxy has a peak structure, which is

dominated by �xy=�xx. With the rescaled �xx, we find

that the peak height is 40 �V=K at kBT ¼ 0:2WL, which
is comparable with the experimental value 20–40 �V=K.
The distinct thermoelectric behaviors near the central LL
can be traced down to the Berry phase anomaly of the
Dirac point. The central LL in graphene in fact consists of
two degenerate LLs, one from particles and another from
holes, which are protected by the particle-hole symmetry.
While this makes no distinction in electrical transports
when the energy is tuned through the LL, electrons and
holes contribute differently in thermoelectric transports
than in electrical transports. Here, the contributions of
equal numbers of electrons and holes moving along the
same thermal gradient direction cancel with each other in
Sxx and are additive in Sxy. Other LLs, without this prop-

erty, have similar behaviors as in conventional IQHE
systems.
In summary, we have investigated the thermoelectric

transports in graphene by a numerical study on the lattice
model in the presence of both disorder and a magnetic field
and obtain results in agreement with experiments.
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