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Using exact diagonalization we show that the spin-polarized Coulomb ground state at � ¼ 5
2 is

adiabatically connected with the Moore-Read wave function for systems with up to 18 electrons on the

surface of a sphere. The ground state is protected by a large gap for all system sizes studied. Furthermore,

varying the Haldane pseudopotentials v1 and v3, keeping all others at their value for the Coulomb

interaction, energy gap and overlap between ground- and Moore-Read state form hills whose positions and

extent in the ðv1; v3Þ plane coincide. We conclude that the physics of the Coulomb ground state at � ¼ 5
2 is

captured by the Moore-Read state. Such an adiabatic connection is not found at � ¼ 1
2 , unless the width of

the interface wave function or Landau level mixing effects are large enough. Yet, a Moore-Read-phase at

� ¼ 1
2 appears unlikely in the thermodynamic limit.
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One of the most intriguing strongly correlated electronic
states discovered in nature is the even-denominator frac-
tional quantum Hall effect (FQHE) at the Landau level
filling factor � ¼ 5

2 ¼ 2þ 1
2 [1], i.e., at the half-filled sec-

ond orbital Landau level (LL) of a 2D electron system. The
5
2 FQHE cannot be understood within the canonical hier-

archical (Laughlin) theory, since the odd-denominator rule
is a necessity to preserve the Pauli principle. A particularly
interesting proposal by Moore and Read (MR) [2] extend-
ing Laughlin’s ideas to quantum Hall states at half filling is
the ‘‘Pfaffian’’ wave function (WF), characterized by qua-
siparticle excitations obeying non-Abelian braiding statis-
tics [3].

The first numerical study of this WF was carried
out by Greiter et al. [4] who considered it as a candi-
date for the observed FQHE at both � ¼ 1

2 and 5
2 . Their

calculations done for systems on the sphere with Nel � 10
electrons did not allow a determination of the excitation
gap and the difference between � ¼ 1

2 and 5
2 was not ex-

plored in any detail. A first hint at possible adiabatic
continuity (AC) between the MR state and the ground state
(GS) of a two-body model interaction was mentioned
briefly in a subsequent paper by Wen [5], but limited to a
single system size Nel ¼ 10.

Shortly after its discovery, the � ¼ 5
2 state was studied in

a tilted magnetic field [6]. Examining the temperature
dependence of the longitudinal resistivity �xx �
exp�ð�=2kBTÞ, the activation gap � was found to de-
crease with increasing tilt angle and the Hall plateau dis-
appeared beyond some critical tilt angle. These results
suggested that the quantized state is at most partially spin
polarized until at some critical tilt angle the increasing
Zeeman energy produces a phase transition to a gapless
polarized state [7].

This scenario was challenged by one of us [8]: exact
diagonalization results for small systems on a sphere for

spin-unpolarized and fully polarized states at � ¼ 5
2 have

shown that the GS is spin polarized even for vanishing
Zeeman energy. Furthermore, the GS for Nel ¼ 8 electrons
was found to have substantial overlap with the MR state
although that state is the exact ground state of an unphysi-
cal short-range three-body interaction Hamiltonian.
Subsequent theoretical [9,10] and experimental [11] stud-
ies yielded results consistent with these ideas.
These findings led Das Sarma et al. [12] to propose the

use of the � ¼ 5
2 FQH state for the realization of non-

Abelian topological qubits which, they argued, would per-
mit fault tolerant and robust quantum computation. Their
proposal prompted a great surge of activity [3] to further
elucidate the nature of the 5

2 FQHE both theoretically [13–

16] and experimentally [17–19]. However, whether the
FQHE at � ¼ 5

2 observed in experiments has the properties

of the non-Abelian MR state remains an open problem,
especially since the relevance of the ‘‘Pfaffian’’ state at
� ¼ 5

2 has been questioned by [20]: in their exact diago-

nalization studies of quasiholes (QHS), they only observed
QHS with charge e=2, while the QHS in the MR state are
predicted to have charge e=4 [21].
In this Letter we provide theoretical evidence, using

state of the art exact diagonalization, that the MR WF
and the spin-polarized � ¼ 5

2 FQH state belong to the

same universality class [22]. Following the pioneering
work by Haldane and Rezayi [23] who established that
the GS at � ¼ 1

3 is in the universality class of the
1
3 -Laughlin state, we adiabatically change the electron

interaction by interpolating between the three-body inter-
action V3b, for which the PfaffianWF is the unique GS, and
the Coulomb interaction VC and follow the evolution of GS
and energy spectrum by exact numerical diagonalization.
For all even system sizes examined (Nel � 18) we ob-

serve AC of the GS and no indication of a decrease of the
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gap for interactions interpolating between VC and V3b, thus
implying AC between the spin-polarized 5

2 state and the

MR state in the thermodynamic limit.
A related study is mentioned in a recent paper by Möller

and Simon [16]. They report that in systems of 12, 14, and
16 electrons they see no gap closing when interpolating the
interaction between V3b and a particular type of two-body
interaction near the Coulomb interaction, but supposedly
‘‘in the weak pairing phase’’ [16]. Contrary to our present
Letter, no details are given and the difference between � ¼
1
2 and

5
2 is not discussed.

In addition, we systematically vary the two-body inter-
action, by using the Haldane pseudopotentials determining
the pairwise interaction among the electrons, and construct
a phase diagram which elucidates the difference between
� ¼ 1

2 and � ¼ 5
2 and allows a discussion of the influence of

experimental parameters and Landau level mixing on the
nature of the state. In this phase diagram the region that
corresponds to the gapped phase coincides with the region
where the exact numerical GS has a large overlap with the
MRWF, further corroborating the AC between the realistic
GS and the MR state.

The possibility of MR FQHE at � ¼ 1
2 has first been

discussed in [4], but the consensus [24,25] seems to be that
the � ¼ 1

2 state in a single-layer 2D system is unlikely to be

the MR state. In this Letter, we find that under specific
conditions (e.g., the thickness of the layer should be a few
magnetic lengths wide) the � ¼ 1

2 state can become adia-

batically connected to the MR WF for small systems. Yet
for increasing system size, the gap decreases in a way that
it is doubtful that the Moore-Read state can occur in single-
layer systems at � ¼ 1

2 .

In the following we study the low-lying energy spectra
of fully spin-polarized systems with up to 18 electrons in
the half-filled first (� ¼ 1

2 ) and second (� ¼ 5
2 ) LL. If the

ground state (GS) has angular momentum L ¼ 0 (and is
therefore rotation invariant) we consider as ‘‘FQH gap’’ the
energy difference between the GS and the first excited
state, although the real gap corresponding to an exciton
where quasiparticle and quasihole are infinitely separated
will be somewhat larger [26].

We use Haldane’s spherical geometry [23], in which for
a half filled LL the particle number Nel and the number of
flux quanta N� are related by N� ¼ 2Nel � S. Here, the

‘‘shift’’ S is a topological quantum number [27] and de-
pends on the particular FQH state: for the MR state S ¼ 3.
We consider particle interactions of the form

V ¼ ð1� xÞV2b þ xV3b; (1)

with 0 � x � 1, interpolating between a generic 2-body
potential V2b and the 3-body interaction V3b for which the
MRWF is an exact GS [5]:

V3b ¼ A

N5
el

XNel

i<j<k

Sijkf�j�ði� jÞ�2
k�ði� kÞg; (2)

where �ði� jÞ is the � function in the separation of
particles i and j, Sijk denotes symmetrization over the

permutations within the triplet (ijk). We choose the con-
stant A such that V3b generates the approximately same gap
as the Coulomb interaction in the second LL. Note that V3b

leads to a GS energy which is extensive for any � > 1
2 . By

projection of V3b on a LL the singularities of the � func-
tions are regularized. The 2-body interaction V2b can be
written as

V2b ¼
XN�

m¼0

vm

X

1�i<j�Nel

PmðijÞ; (3)

where PmðijÞ is the projector on the states in which parti-
cles i and j have relative angular momentum m@ and the
pseudopotential vm [23] is the corresponding LL-
dependent interaction energy.
For V2b we first take the Coulomb interaction VC of

point particles and study the evolution of the ground state
jGxi and lowest energy excited states as function of the
parameter x. In Fig. 1 we show the energies (lower panel)
and overlaps hG0jGxi and hG1jGxi (upper panel), where
jG1i is the MR WF (unique GS for V3b) and jG0i is the
Coulomb GS. Energies are measured in the usual units

e2=�‘0, where ‘0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@c=eB

p
is the magnetic length.

Figure 1(a) shows the results in the second LL: Varying
x from 0 to 1 the GS has always angular momentum L ¼ 0
and the lowest excitation energy has a weak maximum near
x ¼ 1

2 with values 0.0257, 0.0300, 0.0248, 0.0263, 0.0264,

0.0240 for Nel ¼ 8, 10, 12, 14, 16, and 18, respectively.
Furthermore, as x is lowered, the overlap with the MRWF
slowly decreases reaching a fairly high value at the
Coulomb point (�0:78 for Nel ¼ 16 electrons). At the
Coulomb point (x ¼ 0) and at the Moore-Read point

FIG. 1 (color online). Nel ¼ 16, N� ¼
29: low-lying energy spectra (the lowest
L ¼ 0 state is the reference) and over-
laps hG1jGxi and hG0jGxi as function of
the interaction parameter x. (a) � ¼ 5

2 ,

(b) � ¼ 1
2 , (c) � ¼ 1

2 for finite width

w=‘0 ¼ 2:46. In (b) overlap curves are
shown as dashed lines for x values for
which the state jGxi is not the GS.
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(x ¼ 1), we have evidence of a finite gap in the thermody-
namic limit (i.e., with infinite quasiparticle-quasihole sepa-
ration). The gap in the thermodynamic limit has been
calculated in [8,26] for Coulomb interaction, while its
value for the MR state, with A ¼ 0:0005, is about 0.024.
Since our calculated gaps for 0 � x � 1 and for all system
sizes are never smaller than at the two end points x ¼ 1 and
x ¼ 0, we may expect AC at � ¼ 5

2 between Coulomb GS

and MR state in the thermodynamic limit.
The structure of the excitation spectrum (particularly its

L dependence) depends on x. This must be expected: the
interaction between quasiparticles and quasiholes will
cause some reordering of excited states. A similar obser-
vation was made studying the � ¼ 1

3 state [23].

In the lowest LL at � ¼ 1
2 [see Fig. 1(b)], the situation is

different: As x is reduced, at x ¼ xc we observe a phase
transition to compressible GS and for 0 � x � xc the GS
has angular momentum L > 0, and thus vanishing overlap
with the Paffian and no AC to the MR state. The situation
changes when the finite width of the wave function in the
direction perpendicular to the 2D electron system are taken
into account. Our results of Fig. 1(c) reveal that a small gap
opens down to x ¼ 0 and the overlaps are comparable in
size or even larger than in the second LL. Thus the finite
width induces adiabatic connection between MR WF and
Coulomb GS in the lowest LL. In analogy, we also look at
the effect of a finite width in the second LL: In agreement
with [14], we obtain a decrease of the Coulomb gap,
together with an increase of the overlap between MR WF
and Coulomb GS. We note LL mixing effects can be
accounted for by an effective width in the range 1 &
w=‘0 & 6, depending on the cyclotron energy (and elec-
tron density) [10,28].

To study in detail the finite width effect and the differ-
ence between first and second LL we vary the 2-body
interaction V2b by changing the pseudopotentials v1 and
v3 [Eq. (3)] and keeping all other vm at their Coulomb

values (in a given LL). The values of vi encode the
dependence of the interaction on sample characteristics,
like the width of the 2D layer and the electron density.
In Fig. 2(a) we plot the gap as function of v1=v

coul
1 and

v3=v
coul
3 for 16 particles in the second LL, where vcoul

i are

the Coulomb values of the pseudopotentials. In Fig. 2(b)
we do the same for the overlap of the GS with the MRWF.
In both cases we find hills with ridges whose positions are
close to a straight line given by an approximately fixed
v3=v1 ratio: the gap ridge increases approximately linearly
along this line, the overlap ridge rises quickly, reaching
values well above 0.9 even for the largest systems (Nel �
16). Remarkably, these two hills are congruent in position
for a given system size, while their extent and shape show
only little system size dependence. The two hills of gap and
overlap thus belong together and are a manifestation of the
‘‘MR phase’’; below the hills, for smaller v3, we find a
compressible phase.
We also note that, if we plot the gaps and overlaps as

functions of y1 ¼ v1=v5 and y3 ¼ v3=v5, the resulting
plots for � ¼ 1

2 and � ¼ 5
2 are quite similar, the differences

being of the same magnitude as those due to finite size
effects. This results from the fact that the higher order vm’s
change only little when going from the lowest to the second
LL. In Fig. 2(c) we summarize our results for both LL in
the (y1, y3) plane: the gap contour plot shows the incom-
pressible region, in addition the black line marks the top of
the overlap ridge; the shaded (blue) area is the compress-
ible region.
Now looking at the finite width y3ðy1Þ trajectories we

can view the above results in a new light: for � ¼ 5
2 (thick

line marked with 4 dots) the Coulomb point is on the ‘‘safe
side’’ of the MR gap ridge, with a consistent gap and a high
overlap with the MR WF; increasing the thickness of the
system the overlap grows somewhat, as the finite width
trajectory approaches the crest of the ridge, while the gap
decreases. For � ¼ 1

2 (thick line marked with 5 dots) the

(a) (b)

(c) (d)

coul

coul

coul

FIG. 2 (color online). Surface plots for
(a) gap and (b) overlap of the GS with
the MRWF for the 2-body interaction of
Eq. (3), varying the pseudopotentials v1

and v3 in the second LL. (c) contour plot
of the gap as a function of v1=v5 and
v3=v5. The black line marks the maxima
of the overlap. The thick lines with dots
depict the finite width trajectory, the
upper (lower) refers to � ¼ 5

2 ð12Þ, the

dots denoting width w=‘0 ¼ 0, 1, 2, 3,
4 (from right to left). The compressible
region is shaded blue (all data for Nel ¼
16, N� ¼ 29). (d) energy gap at � ¼ 1

2 as

function of w=‘0 for Nel ¼ 8, 10, 14, 16,
18.
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situation is very different: the Coulomb point is on the
other side of the MR ridge, near the line of the phase
transition, for some system sizes in the gapped region,
for others already in the compressible phase. We thus
conclude that the MR phase is so close to the compressible
domain that a definite prediction of its existence in the
thermodynamic limit is not possible and only experiment
can answer.

Indeed, the gaps calculated for � ¼ 1
2 for finite width are

small [Fig. 2(d)] and show a marked, although nonmono-
tonic, decrease with increasing system size (Nel � 18)
while the layer width at which the gap opens increases
with system size. It is unlikely that a gap survives in the
thermodynamic limit for any layer or quantum well width
supporting a single-layer system [29]. This proves the
importance of careful studies of the system size depen-
dence for valid conclusions about the existence of FQH
states.

As a test of our methods in discriminating the MR phase
from Abelian FQH phases we studied the system with
Nel ¼ 12 and N� ¼ 2Nel � 3 ¼ 21, which is ‘‘aliased’’

with the hierarchical 2
5 state of 10 holes, N� ¼ 5

2Nholes �
4 ¼ 21 [30]. Indeed, our results for the second LL show
AC between the Coulomb GS and the MR state. However,
in the lowest LL as the interaction is varied from pure three
body to Coulomb, the gap increases linearly while the
overlap of the MR WF with the GS decreases strongly
and its largest overlap is with a high-lying L ¼ 0 state
(�E � 0:128): we have entered the Abelian hierarchical
phase. The phase transition, as the interaction is varied,
from the non-Abelian MR phase to the Abelian hierarchy
phase is signaled by a significant and sharp decrease of the
overlap between the GS and the MR state. To identify the
universality class of a FQH state, AC is thus only a neces-
sary condition, one must also study the overlap between
GS and prototype FQH state as well as its system size
dependence.

Finally, we address the choice of the shift S ¼ 3: three
important features characterize states at S ¼ 3: (i) the GS
at 52 has angular momentum L ¼ 0 for all even system sizes

Nel � 20 explored by us; (ii) the excitation gap shows a
smooth size dependence as expected for a FQH state
[8,26]; (iii) low energy states at S0 � 3 can be consistently
identified as states with Nqp ¼ �2ðS0 � 3Þ quasiparticles
of charge�e=4 nucleated in the underlying FQH state with
S ¼ 3, while the GS has small angular momentum L ¼
OðN0

elÞ indicating that quasiparticles with charge�e=4 are
well separated.

We have shown that the polarized GS for Coulomb
interaction at � ¼ 5

2 is adiabatically connected to the

Moore-Read state for all sizes studied. If the gap does
not close in the thermodynamic limit—we have not seen
any sign that it will—the polarized GS at � ¼ 5

2 has the

characteristics of the MR state. The same may happen in
the lowest LL at � ¼ 1

2 : While finite width and LL mixing

effects may help establish a Moore-Read phase, its real-
ization in the thermodynamic limit remains doubtful.
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