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We present the first rigorous derivation of a number of universal relations for a class of models with

continuously varying indices (among which are interacting planar Ising models, quantum spin chains and

1D Fermi systems), for which an exact solution is not known, except in a few special cases. Most of these

formulas were conjectured by Luther and Peschel, Kadanoff, and Haldane, but only checked in the special

solvable models; one of them, related to the anisotropic Ashkin-Teller model, is novel.
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It has long been conjectured, mainly by Kadanoff [1–3],
Luther and Peschel [4], and Haldane [5], that a number of
universal relations between critical exponents and other
observables hold in a wide class of models, including
planar Ising-like models with quartic interactions, vertex
or Ashkin-Teller models, quantum spin chains and 1D
fermionic systems. Such relations express how the univer-
sality principle works in models with continuously varying
indices: the critical exponents are model dependent (non-
universal) but satisfy model independent formulas, so al-
lowing, for instance, the expression of all the exponents in
terms of a single one. The universal relations have been
verified only in certain special exactly solvable models, but
the conjecture is that they are generally valid in a larger
class of models, for which an exact solution is not
available.

The interest in this kind of universal relations has been
renewed by recent experiments on materials described by
models in this class, like quantum spin chain models
(KCuF3) [6], carbon nanotubes [7], layered structures [8],
or even 1D Bose systems [9]. In such systems the critical
exponents depend on the extraordinarily complex and
largely unknown microscopic details of the compounds,
but the universal relations allow concrete and testable pre-
dictions for them in terms of a few measurable parameters.

Several attempts in the last 30 years have been devoted
to the proof of the universal relations [10], by taking as a
starting point the formal continuum limit (identical for all
the models considered here), where extra Lorentz and
Gauge symmetries are verified and make it solvable. Of
course, lattice effects destroy such symmetries and change
the exponents; however, this problem has never been ana-
lyzed. On the other hand, not all the relations which are
valid in the special solvable models are generically true;
this happens, for example, for the exponents involved in
the dynamic correlations [9] and another example will be
shown below. It is therefore important to determine rigor-
ously, and therefore unambiguously, under which condi-
tions and which one among the relations valid in the
solvable models are generically true.

Aim of this Letter is to report the first rigorous derivation
of several of such universal relations in a wide class of
models, including nonsolvable models; in addition we will
also prove a relation which is totally new.
The simplest class of models in the class of universality

we are considering is coupled Ising models. A configura-
tion (�, �0) is the product of two configurations of spins
� ¼ f�x ¼ �1gx2� and �0 ¼ f�0

x ¼ �1gx2�. For a finite
lattice �, the energy Hð�;�0Þ is a function of the parame-
ters J, J0, �

H ¼ �J
X
x2�
j¼0;1

�x�xþej � J0
X
x2�
j¼0;1

�0
x�

0
xþej

� �Vð�;�0Þ; (1)

where e0 and e1 are the horizontal and vertical unit bond.
Vð�;�0Þ is a quartic interaction, short ranged and symmet-
ric in the exchange � ! �0; for instance

Vð�;�0Þ ¼ X
j¼0;1

X
x;y2�

vðx� yÞ�x�xþej�
0
y�

0
yþej

with vðxÞ a short range potential. It is well known that
several models in statistical mechanics can be rewritten as
coupled Ising models. In particular, the Ashkin-Teller
model [11], a natural generalization of the Ising model to
four states spins, can be rewritten in the form (1) with
vðxÞ ¼ �x;0. Another example is provided by the Eight

Vertex model, in which J ¼ J0 and Vð�;�0Þ ¼P
j¼0;1

P
x2� �xþjðe0þe1Þ�xþe0�

0
xþjðe0þe1Þ�

0
xþe1

. An exact

solution [11] exists only in the case of the 8 V model and
not for the generic Hamiltonian (1); even in the case of the
8 V model, the correlations have not been computed and
only a few indices can be obtained.
Recently new methods have been introduced in [12,13]

to study 2D statistical mechanics models, which can be
considered as a perturbation of the Ising model. These
methods take advantage of the fact that such systems can
be mapped in systems of interacting fermions in d ¼ 1þ 1
dimensions. This mapping was known since a long time
[14], but only in recent years a great progress has been
achieved in the evaluation of the Grassmann integrals
involved in the analysis of the interacting models, in the
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context of quantum field theory and solid state physics, so
that one can take advantage of this new technology to get
information about statistical mechanics models. At the
moment, when an exact solution is lacking, this is the
only way to get rigorous quantitative information on the
properties of such systems. The algorithm is based on
multiscale analysis and allows us to prove convergence
of several thermodynamic functions and correlations up to
the critical temperature; essential ingredients of the analy-
sis are compensations due to the anticommutativity of
Grassmann variables and asymptotic Ward identities (WI).

By using such methods, it has been proved in [13], in the
case J ¼ J0 and � small, that the model is critical in the

thermodynamic limit at the inverse temperature �c ¼
T�1
c ¼ arctanð ffiffiffi

2
p � 1Þ=jJj þOð�Þ; for T near Tc, the spe-

cific heat behaves as

Cv � ��1½jT � Tcj�� � 1�; (2)

with � a continuous non trivial function of �. Moreover,
if G"ðx� yÞ, " ¼ �, are the correlation functions of
the two quadratic observables O"

x ¼ P
j¼0;1�x�xþej þ

"
P

j¼0;1�
0
x�

0
xþej

(which are called energy, if " ¼ þ, and

crossover, if " ¼ �, in the AT model, while the names are
exchanged in the 8 V model), in [13] it has been also
proved that the large distance decay of G"ðx� yÞ is faster
than any power of ��1jx� yj, with correlation length

�� jT � Tcj��; as T ! Tc

while at T ¼ Tc, the decay of G"ðx� yÞ is power law:
G"ðx� yÞ � jx� yj�2x" :

In the Ashkin-Teller model with J � J0, it has been proved
in [15] that there are two critical temperatures, Tc;1 and

Tc;2, such that

Cv ����� log½��2jT � Tc;1jjT � Tc;2j�; (3)

where 2�2 ¼ ðT � Tc;1Þ2 þ ðT � Tc;2Þ2 [the index � in (3)

is the same as in (2)]. While in the isotropic AT the
logarithmic singularity of Cv is turned by the interaction
in a power law, in the anisotropic AT Cv has still a
logarithmic singularity; however, Tc;1 � Tc;2 scales with

a transition index xT ¼ 1þOð�Þ in the isotropic limit:

jTc;1 � Tc;2j � jJ � J0jxT : (4)

The existence of xT was overlooked in the literature. The
indices xþ, x�, �,�, xT are expressed by expansions which
are convergent for � small enough. Hence, the indices can
be computed in principle with arbitrary precision by an
explicit computation of the first orders and a rigorous
bound for the rest; moreover, in this way one can prove
that the indices depend on � and on all details of the model.
On the other hand, the complexity of the expansions makes
essentially impossible to prove the universal relations di-
rectly from them.

Another important class of models whose correlations
can be analyzed by similar methods are models of interact-

ing fermions on a 1D lattice or quantum spin chains; they
are all described by the Hamiltonian

H ¼ � 1

2

XL�1

x¼1

½aþx a�xþ1 þ aþxþ1a
�
x � � u½aþx aþxþ1 þ a�xþ1a

�
x �

þ h
XL
x¼1

~�x þ �
X

1�x;y�L

vðx� yÞ~�x ~�y; (5)

where a�x are the fermion creation or annihilation opera-
tors, ~�x ¼ �x � 1

2 , �x ¼ aþx a�x and vðxÞ is a short range

potential. By using the Jordan-Wigner transformation, the
Hamiltonian of the Heisenberg quantum spin chains can be
written in this way, if J1 þ J2 ¼ 2, u ¼ ðJ1 � J2Þ=2 and
J3 ¼ ��; in particular, if vðx� yÞ ¼ �jx�yj;1=2 and h ¼
0, we have the XYZ model. Let us define x ¼ ðx; x0Þ,
Ox ¼ eHx0Oxe

�Hx0 and, if A ¼ Ox1
. . .Oxn

, hAi ¼
limL!1

Tre��HTðAÞ
Tre��H , T being the time order product. If u ¼

0, it was shown in [16] that, for � small enough, if T

denotes the truncated expectation, hSð3Þx Sð3Þ0 iT�
cosð2pFxÞ 1þOð�Þ

2	2½x2þðvsx0Þ2�xþ
þ 1þOð�Þ
2	2½x2þðvsx0Þ2�

; (6)

where Sð3Þx ¼ �x � 1=2, pF ¼ cos�1½h� �v̂ð0Þ� þOð�Þ
is the Fermi momentum (if h ¼ 0, pF ¼ 	=2 by symme-
try) and vs ¼ sinpF þOð�Þ is the Fermi (or sound) veloc-
ity, which is modified by the interaction, since, contrary to
the previous Ising case, there is no symmetry between
space and time. Finally, xþ is a critical index, expressed
by a convergent expansion; it depends on all details of the
model, as it is apparent from the explicit computation of its
first order contribution, which gives xþ ¼ 1� a1�þ
Oð�2Þ, with a1 ¼ ½v̂ð0Þ � v̂ð2pFÞ�=ð	 sinpFÞ [we denote

by f̂ðkÞ, k ¼ ðk0; kÞ, the Fourier transform of fðxÞ and by

f̂ðkÞ the Fourier transform of fðxÞ]. In the special case of
the XXZ model (vðx� yÞ ¼ �jx�yj;1=2), (6) agrees with

algebraic Bethe ansatz results [17]. When J1 � J2, that is

u � 0, hSð3Þx Sð3Þ0 iT decays exponentially, with correlation

length �� jJ1 � J2j� ��, with �� ¼ 1þ a1�þOð�2Þ, a1
being the same constant as before. If J1 ¼ J2, ha�x aþy iT �
jx� yj�1�
, 
 ¼ Oð�2Þ> 0, and the correlation of the
Cooper pair operator �c

x ¼ aþx aþx0a�x a�x0 , x0 ¼ ðxþ 1; x0Þ,
decays as jx� yj�2x� , x� ¼ 1þ a1�þOð�2Þ.
If u ¼ 0 and jx ¼ ð2i sinpFÞ�1½aþx0a�x � aþx a�x0 �, the fol-

lowing WI, for k and kþ p close to p!
F � ð!pF; 0Þ, ! ¼

�, are true:

� ip0h�̂pâ
þ
k â

�
kþpi þ!p~vJhĵpâþk â�kþpi � BG;

�ip0hĵpâþk â�kþpi þ!p~vNh�̂pâ
þ
k â

�
kþpi � �BG;

(7)

with G � Gðk;kþ pÞ ¼ ½hâþk â�k i � hâþkþpâ
�
kþpi�, B ¼

1, �B ¼ 1þOð�Þ and ~vJ, ~vN ¼ vsð1þOð�Þ); in particular
~vN=~vJ ¼ 1þ 2a1�þOð�2Þ, with a1 the constant defined
above, after (6). When � ¼ 0, the continuity equations for
�x and jx imply WI similar to (7) with �B ¼ 1 and ~vN ¼
~vJ ¼ vs; the interaction has the effect that the normaliza-
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tion �B is not 1 (½H;�x� ¼ 0 but ½H; jx� � 0) and two
different velocities, the charge ~vJ and the current velocity
~vN , appear. The presence of the lattice, which breaks the
Lorentz symmetry of the continuum limit, causes the pres-
ence of three distinct velocities, ~vN , ~vJ, vs. Finally, we re-

call that the susceptibility is defined as �¼ limp!0 �̂ð0;pÞ,
where �̂ðp0; pÞ is the Fourier transform of hSð3Þx Sð3Þ0 iT;
���2 is the compressibility if � is the fermionic density.
Our results are contained in the following heorem.

Theorem.—Given the models with Hamiltonian (1) and
(5), at small coupling all the indices defined above can be
uniquely expressed in terms of one of them:

x� ¼ x�1þ ; � ¼ 2ð1� xþÞð2� xþÞ�1; (8)

��1 ¼ 2� xþ; ���1 ¼ 2� x�1þ ; (9)

2
 ¼ xþ þ x�1þ � 2; (10)

xT ¼ ð2� xþÞð2� x�1þ Þ�1: (11)

Moreover, in the model (5) the velocities appearing in (7)
verify ~vN ~vJ ¼ v2

s and ~vJ ¼ sinpF, while the susceptibility
� verifies

� ¼ xþð	vsÞ�1: (12)

(11) is a new relation for the Ashkin-Teller model, never
proposed before; the first relation in (8) was conjectured in
[1], (9) and (10) in [3,4]. (12) is part of the Haldane
Luttinger liquid conjecture [5] for fermionic systems or
quantum spin chains. Some of the above relations were
checked in certain solvable case: the second of (8), which
is equivalent, by using the first of (9), to the hyper-scaling
relation 2� ¼ 2� �, in the case of the Eight Vertex model
[11]; (10) and (12) in the case of the Luttinger model [18];
(12) in the XYZ spin chain [5]. The above theorem pro-
vides the first proof of the validity of such relations for
generic non solvable models. Note that, in the notation of
[5], vN � ð	�Þ�1 should not be confused with ~vN appear-
ing in the WI (7); they are coinciding only in the special
case of the Luttinger model. Therefore ~vN ¼ vN is an
example of relation true in the Luttinger model but not in
the presence of a lattice.

Outline of the proof.—The technical details are long and
will appear elsewhere [19,20]; here we just outline the
proof. The partition function and some of the correlations
of the spin model (1) can be exactly rewritten as sums of
Grassmann integrals describing d ¼ 1þ 1 Dirac fermions
on a lattice and with quartic nonlocal (but short ranged)
interactions, by using the classical representation of the
Ising model in terms of Grassmann integrals [21]. The

Grassmann variables are written as c k ¼ P
0
h¼�1 c ðhÞ

k ,

with c ðhÞ
k living at momentum scale k ¼ Oð2hÞ. After

the integration of the fields c ð0Þ; . . . ; c ðhþ1Þ, the partition
function can be written [13] asZ

PZh;�h
ðdc ð�hÞÞeVðhÞð ffiffiffiffi

Zh

p
c ð�hÞÞ; (13)

where PZh;�h
ðdc ð�hÞÞ is the Gaussian Grassmann integra-

tion with propagator gð�hÞðkÞ ¼ 
hðk0Þ
Zh

A�1 with A given by

DþðkÞ þ�þþ ��h ���þ
��h ��þ� D�ðkÞ þ���

� �
(14)

where D�ðkÞ ¼ �i sink0 � sink1; 
hðkÞ is a smooth com-
pact support function nonvanishing only for jkj � 2h,Zh

and�h are the effective wave function renormalization and
the effective mass, ��� are Oðk2Þ and non vanishing at
k ¼ ð�	;�	Þ (there is no fermion doubling problem);

moreover, VðhÞ ¼ �h

P
xc

þ
x;þc�

x;þcþ
x;�c�

x;� þ Rh, where

�h is the effective coupling and Rh is a sum of irrelevant
terms, represented as space-time integrals of field mono-
mials, multiplied by kernels which are analytic functions of
�k, k > h. Analyticity is a very nontrivial property, ob-
tained via tree expansions [22] and exploiting anticommu-
tativity properties of Grassmann variables, via Gram
inequality for determinants (which takes into account com-
pensations between different graphs of different signs at a
given order). It is important to stress that (13) is exact, in
the sense that the irrelevant terms and the lattice are fully
kept into account (in standard RG applications they are
instead neglected). The effective coupling �h converges, as
h ! �1, to a function ��1 (analytic function of �),
thanks to the asymptotic vanishing of the beta function,
which is a consequence of Ward identities. A similar
analysis can be repeated in the case of the fermionic model
(5), the main (but trivial) difference being that (14) is
replaced by a similar expression, taking into account that
x0 is a continuous variable; such asymmetry has the effect
that, contrary to what happens in the spin case, the velocity
is renormalized by the interaction. In order to exploit the
asymptotic symmetries of the model, it is convenient to
introduce the following Grassmann integralZ

Pth
Z ðdc ð�NÞÞeVðNÞð

ffiffiffiffiffi
ZN

p
c ð�NÞÞ; (15)

where, if c ¼ ðcþ; c�Þ and �c ¼ cþ�0 are Euclidean

d ¼ 1þ 1 spinors, Pth
Z ðdc ð�NÞÞ is the fermionic Gaussian

integration with propagator gð�NÞðkÞ ¼ 
NðkÞð��k�Þ�1,

and VðNÞðc ð�NÞÞ ¼ R
dxdyvðx� yÞj�ðxÞj�ðyÞ, with

j�ðxÞ ¼ �c x��c x and vðx� yÞ a short range symmetric

interaction. A multiscale integration is now necessary also
in the ultraviolet region to perform the limit N ! 1, while
in the integration of the infrared scales an expression
similar to (13) is found; the effective coupling is denoted

by ~�h. The crucial point is that it is possible to choose, by a

fixed point argument, the values of ~�1 (fixed c ¼ 1 in the

model (1), while c ¼ vs in the model (5)) so that ��1 ¼
~��1. This implies that the critical exponents of the two
models are the same, because the exponents are expressed

by series in ~��1=c with universal coefficients. Of course
~�1 is a convergent series in � depending on all details of
the models (1) or (5). On the other hand, the continuum
Grassmann integral (15) verifies extra Lorentz and Gauge
symmetries, implying exact Ward identities when the ul-
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traviolet cutoff is removed; by the transformation c !
ei�xc x one finds

�ip�hj�;pc k
�c�
kþpith ¼ hc k

�c kith � hc kþp
�c�
kþpith

þ �Nðk;pÞ; (16)

where�N ¼ h�jpc k
�c kþpith, with �jp ¼ R

dk½ð
�1
N ðkþ

pÞ � 1Þð��k� þ ��p�Þ � ð
�1
N ðkÞ � 1Þ��k�� �c kc kþp;

an analogous expression is obtained for the axial current
�c���5c . By a multiscale analysis it can be proved that

lim
N!1�Nðk;pÞ ¼ �i�v̂ðpÞp�hj�;pc k;!

�c kþp;!ith;
� ¼ ~�1=ð4	cÞ (17)

A similar expression holds for the chiral WI; the fact that
�Nðk;pÞ is not vanishing in the limit N ! 1 is a mani-
festation of a quantum anomaly. The anomaly coefficient �

is linear in ~�1; this is the nonperturbative analogue of the
anomaly nonrenormalization in QED in 4D. Such crucial
property depends on our assumption about the interaction
in (15); it would not be true, for instance, if we replace
vðx� yÞ with a delta function [23]. By combining the WI
with the Schwinger-Dyson equations, one gets some equa-
tions for the correlations, from which the indices can be
computed as functions of �. One can find, for example, that
xþ ¼ ð1� �Þð1þ �Þ�1, x� ¼ ð1þ �Þð1� �Þ�1, so that
xþx� ¼ 1; the other relations between the indices follow
by similar arguments. Note that the indices we consider

have a simple expression in terms of ~�1, but ~�1 is of
course rather complex and model dependent as a function
of �.

A similar RG analysis can be repeated for the model (5);
it turns out that the vertex functions in the first line of (7)

are asymptotically coinciding with Zð3Þhj0p ĉþ
k;! ĉ

�
kþp;!ith

and i ~Zð3Þhj1p ĉþ
k;! ĉ

�
kþp;!ith, with ~Zð3Þ=Zð3Þ ¼ 1þ a1�þ

Oð�2Þ; therefore, by using the WI for the model (15), we

derive (7) with B ¼ Zð3ÞZ�1ð1� �Þ�1, �B ¼ ~Zð3ÞZ�1ð1þ
�Þ�1, ~vN ¼ vsZ

ð3Þ= ~Zð3Þ, ~vJ ¼ vs
~Zð3Þ=Zð3Þ; on the other

hand, the equations of motion related to the lattice
Hamiltonian impose the constraints vJ ¼ sinpF and B ¼
1. Finally, a WI for the density correlation can be also

derived; if D!ðpÞ ¼ �ip0 þ!vsp and �̂ðpÞ ¼ h�̂p�̂pi,
we get

�̂ðpÞ ¼ 1

4	vsZ
2

ðZð3ÞÞ2
1� �2

�
2�D�ðpÞ

DþðpÞ �
DþðpÞ
D�ðpÞ

�
;

which implies (12), by using � ¼ limp!0 �̂ð0; pÞ.
In conclusion, we have established for the first time the

validity of a number of universal relations between critical
exponents and other quantities in a wide class of generally
nonsolvable lattice models. They are true in special con-
tinuum solvable models and we have proven that the lattice
symmetry breaking effects produce different velocities in
the model (5) and change the critical exponents, but do not
destroy the validity of several universal relations (on the

other hand, not all the relations valid in the solvable models
are generically true, like the relation ~vN ¼ vN or the
relations for the dynamic exponents [9]). Some of the
universal relations are used for the analysis of experiments
in carbon nanotubes or spin chains, but we believe that
their interest goes much beyond this, as they provide one of
the very cases in which the universality principle, a general
belief in statistical physics and beyond, can be rigorously
verified. Extensions of our methods will hopefully allow us
to prove universal relations in an even wider class of
models, as well as other relations between spin or dynamic
exponents.
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