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In a recent experiment Paoletti et al. [Phys. Rev. Lett. 101, 154501 (2008)] monitored the motion of

tracer particles in turbulent superfluid helium and inferred that the velocity components do not obey the

Gaussian statistics observed in ordinary turbulence. Motivated by their experiment, we create a small 3D

turbulent state in an atomic Bose-Einstein condensate, compute directly the velocity field, and find similar

nonclassical power-law tails. We obtain similar results in 2D trapped and 3D homogeneous condensates,

and in classical 2D vortex points systems. This suggests that non-Gaussian turbulent velocity statistics

describe a fundamental property of quantum turbulence. We also track the decay of the vortex tangle in the

presence of the thermal cloud.
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Quantum turbulence (a dynamic tangle of discrete, re-
connecting vortices) is studied in superfluid 4He [1], 3He-B
[2], and, more recently, in atomic Bose—Einstein conden-
sates (BECs) [3–5]. The defining property of these quan-
tum fluids is that the superfluid velocity is proportional to
the gradient of the phase of a complex order parameter.
Therefore, whereas in classical ordinary fluids (such as air
or water) the rotational motion is unconstrained, in a
quantum fluid the vorticity is singular: the velocity magni-
tude, at distance r from the axis of a quantum vortex, is
�=ð2�rÞ, � being the quantum of circulation.

Recent work has revealed remarkable similarities [6]
between classical turbulence and quantum turbulence
(the same Kolmogorov energy spectrum [7], temporal
vorticity decay [8], pressure drops in pipes and channels
[9], and drag crisis behind a sphere [10]). In a recent
experiment in superfluid 4He Paoletti et al. [11] have
identified an important dissimilarity: the components of
the turbulent velocity field do not obey the usual Gaussian
distribution which is observed in ordinary turbulence [12],
but follow power-law-like behavior.

The main aim of this Letter is to remark that non-
Gaussian velocity statistics are a fundamental property of
turbulence in a quantum fluid. To achieve this aim, we
move from 4He to atomic BECs. The agreement with the
experiment that we find suggests that power–law behavior
is indeed typical of quantum turbulence, in stark contrast
with classical turbulence.

To create a vortex tangle in a confined BEC we choose
the technique of phase imprinting [13]; although this is not
the only method to generate turbulence [5,14,15], it is
specific to BECs, and can in principle be exploited to create
isotropic or polarized tangles. We study the decay of the
tangle by evolving the three-dimensional (3D) Gross-
Pitaevskii equation (GPE) for realistic experimental pa-
rameters, and discuss the effect of the thermal cloud. An
ultracold dilute atomic gas confined in a spherical trap is
described by the dimensionless GPE
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for the complex wave function �, where r is the position

vector; c ¼ a3=20 N�1=2� is dimensionless and satisfies the

constraint
R
drjc j2 ¼ 1. In writing Eq. (1) we use the

harmonic oscillator length a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!Þp

as unit of dis-
tance and the inverse trapping frequency 1=! as unit of
time, where m is the mass of one atom, C ¼ 4�Na=a0 is
the dimensionless measure of the interaction between bo-
sons, N is the number of atoms and a is the scattering
length. Finite temperature effects are qualitatively simu-
lated by replacing i at the left-hand side of Eq. (1) with (i�
�) [16] where � models the dissipation due to the thermal
cloud as justified by more involved treatments [17].
We employ realistic experimental parameters for a 23Na

condensate (a ¼ 2:75 nm) of N ¼ 105 atoms and trapping
frequency ! ¼ 2�� 150 Hz, giving C ¼ 2:019� 103,
ao ¼ 1:71 �m and 1.06 ms as time unit. In a homogeneous
condensate the healing length � is estimated by balancing
the kinetic energy per particle and the interaction strength,

which implies the (dimensionless) � ¼ ð2CnÞ�1=2 where
n ¼ jc j2 is the density. In a harmonic trap, n is position
dependent, so we estimate � from the mean density; for
example, at t ¼ t0 (Fig. 1), hni ¼ 1:35� 10�3 and h�i ¼
0:43.
Equation (1) is evolved pseudospectrally via XMDS

[18] in 3D using a 4th order Runge-Kutta method and
periodic boundary conditions. The spatial domain jxj, jyj,
jzj � 8 is discretized on a 1283 grid with time step �t ¼
10�4. We have verified that the results are independent of
spatial and temporal stepsize.
The initial condition is created by phase-imprinting a

grid of 17 vortices oriented parallel to the Cartesian axes in
a staggered way (no vortices intersect), and propagating
this configuration for a short period in imaginary time
(which is equivalent to replacing t by -it in Eq. (1)) while
continuously renormalizing c , until the density adjusts to
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reveal the desired vortex structure. This is then propagated
in real time. Initially the vortices reconnect and become
excited, resulting in an increase in the total vortex line
length LðtÞ. This increase continues up to some time t0,
when LðtÞ achieves its peak value L0, and a maximally
tangled turbulent state has been generated [Fig. 1(top)]. At
this point the dimensionless vortex line density (vortex
length divided by volume) is 0.79. The vortex line length
evolution for t > t0 is shown in Fig. 1(bottom). Since no
energy is injected the turbulence is not sustained but de-
cays over a time of the order t � 10, as vortices reconnect,
break up and decay into sound waves [19], or leave the
condensate. Our calculation lasts longer (up to t ¼ 27) at
which time one long vortex is left at the center of the
condensate and some shorter vortices surround it closer
to the condensate’s edge. Large volume oscillations of the
condensate at 1=3 of the trap frequency are observed.
Although the amplitude of these oscillations decreases as
the turbulence decays, a method of exciting turbulence
without volume oscillations would be preferable for
experiments.

At each t we attribute a vortex core length to every point
in the condensate at which the real and imaginary parts of
c crosses zero (therefore defining the vortex axis) [20].
The total vortex length LðtÞ is the sum of all identified
vortex points within the condensate edge, which, through-
out this work, is defined as the outermost points at which n
drops below 25% of the maximum density. To compare
results at different � we fit the decay of the vortex length
with the exponential form Lðt� t0Þ=L0 � expð�cðt� t0ÞÞ

[solid line in Fig. 1 (bottom) inset], although for � ¼ 0 the
observed decay is also consistent with 1=Lðt� t0Þ / t� t0
as found in [1]. Fitting over the main decay period (10 time
units), yields consistent values for different grid sizes (c ¼
0:151� 0:005 and 0:144� 0:007 for grid sizes of 1283

and 2563; corresponding L0 ¼ 406 and 378). We also
check that the decay of LðtÞ is largely insensitive to the
initial vortex configuration obtained by imprinting extra
vortices.
To obtain a qualitative understanding of the effect of the

thermal cloud, we repeat the above calculation with � ¼
0:015, 0.03, and 0.06. As anticipated, the role of tempera-
ture is to induce faster decay of the turbulent state, leading,
respectively, to c ¼ 0:252� 0:007, 0:274� 0:006, and
0:340� 0:018 (with L0 ¼ 369, 339, and 300, due to the
damping in the initial period t < t0).
Our next step is to analyze the turbulent (dimensionless)

superfluid velocity field, which we compute directly from
the definition vðrÞ ¼ ðc �rc � crc �Þ=ð2ijc j2Þ. (the
derivatives of c being obtained spectrally). Using the

Madelung representation c ¼ ffiffiffiffiffiffiffiffiffi
nðrÞp

exp½i’ðrÞ�, this
yields vðrÞ ¼ r’ðrÞ; i.e., the velocity depends only on
the condensate phase ’. We calculate the probability den-
sity function (PDF) of each Cartesian velocity component
vi (i ¼ x, y, z) for � ¼ 0 (see Fig. 2 top) and compare it to
the form that a normalized Gaussian PDF (gPDF) of the
velocity would take

gPDF ðviÞ ¼ 1

�
ffiffiffiffiffiffiffi
2�

p exp

��ðvi � ~�Þ2
2�2

�
; (2)

where �, �2, and ~� are the standard deviation, variance,

FIG. 2 (color online). Top: Trapped 3D BEC corresponding to
Fig. 1 (� ¼ 0, t0 ¼ 1:9); log10½PDFðviÞ� vs velocity component
vi for vx (blue circles, 	), vy (red triangles, 5), and vz (green

asterisks, *), yielding, respectively, power-law coefficients b ¼
�3:3, �3:5, and �3:6. Corresponding log10½gPDFðviÞ� plots
shown by black dotted (vx), dash-dotted (vy), and solid (vz)

lines, which almost overlap. The velocity components are only
sampled within the condensate edge. Bottom left:
log10½PDFðviÞ� and corresponding log10½gPDFðviÞ� vs vi (sym-
bols as above) for a 3D homogeneous condensate (average
intervortex spacing � 10�, b ¼ �3:6). Bottom right: the same
for a 2D system of 50 positive and 50 negative vortex points
(power law b ¼ �3:1).

FIG. 1 (color online). (Top): 3D turbulent state within the
condensate edge (blue shading) at t0 ¼ 1:9 and � ¼ 0; the
maximum density (used to determine the condensate edge) is
n ¼ 4:39� 10�3. (Bottom) Evolution of normalized total length
Lðt� t0Þ=L0 for � ¼ 0 (black asterisks), 0.015 (purple pluses),
0.03 (blue circles, 	), and 0.06 (red diamonds) corresponding to
the same initial state; the inset shows the initial increase of LðtÞ
for t < t0 and the exponential fit for � ¼ 0 (solid green line).
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and mean of the data. We find that our velocity statistics are
non-Gaussian and obey power-law dependence PDFðviÞ /
vb
i with �3:6< b<�3:3 in all three directions, consis-

tently with the high-velocity tails found experimentally by
Paoletti et al. [11] in turbulent superfluid 4He (their b is
�3). The non-Gaussian nature does not change if instead
of the total velocity we compute the incompressible veloc-
ity [15] (thus disregarding sound modes).

We find that deviations from Gaussian behavior are less
pronounced (but still noticeable) if we omit sampling the
velocity very near the axis where the density is less than a
prescribed cutoff. Unlike a classical vortex, there are not
individually distinguishable atoms which spin about the
vortex axis, and the velocity field is entirely defined by the
macroscopic phase ’ðrÞ irrespective of the density nðrÞ, so
our procedure is justified. The small wiggles in the PDF for
values close to zero may be a measure of the anisotropy of
the vortex tangle in our condensate and would not feature
in velocity PDFs of a truly isotropic state of quantum
turbulence in a larger condensate, or they could be due to
the large volume oscillations of the 3D condensate.

The observed non-Gaussianity of the velocity statistics
holds during the decay of the vortex tangle at different
times t ¼ 2 and 4 at both � ¼ 0:03 and � ¼ 0:06, suggest-
ing that it is not necessarily caused by vortex reconnec-
tions, whose frequency depends on the vortex line density
[21]. To verify that our result is general and does not
depend on vortex line density or reconnections, we repeat
the calculation in two-dimensional (2D) BECs; such con-
densates are created when the axial trapping frequency,!z,
is much greater than the radial trapping one, !r, freezing
out motion along z. The condensate in the radial plane is

also described by Eq. (1), with C ! C2d ¼ 2
ffiffiffiffiffiffiffi
2�

p
aN=az,

and c ! c 2d ¼ arN
�1=2� which relates the dimension-

less wave function to the dimensional 2D condensate wave

function, �2d, where ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!rÞ

p
, az ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!zÞ

p
denoting the harmonic oscillator lengths in the radial and
z directions). To induce turbulence we imprint 42 positive
and 42 negative vortices, randomly located and aligned
along the axial direction [3]. Here we simulate a 2D 23Na
Bose gas with N ¼ 107 atoms and condensate aspect ratio
!z=!r ¼ 20 (with !r ¼ 7:5� 2� Hz), implying C2d ¼
8:06� 104. The spatial computational domain jxj, jyj �
25 is discretized on a 10242 grid with time step�t ¼ 10�4.
Choosing our initial monitoring time arbitrarily at t0 ¼
4:4, we have 86 vortices in the dimensionless condensate
area 752, corresponding to a dimensionless vortex line
density (number of vortices per unit area) of 0.11. We
find a mean radial density hn2di ¼ 1:23� 10�4, and an

estimated healing length �2d ¼ ð2C2dn2dÞ�1=2 ¼ 0:225.
Proceeding as in 3D, the velocity PDFs and gPDFs of the
2D condensate are shown in Fig. 3 for � ¼ 0; we find again
nonclassical (non-Gaussian) velocity statistics PDFðviÞ /
vb
i with b ¼ �3:4 and �3:2 for positive vx and vy. These

PDFs lack the small wiggles close to zero velocity ob-
served in 3D, as the initial condition induces a more

isotropic turbulent state. Unlike the 3D case, in this calcu-
lation vortex reconnections play a negligible role, because
the number of vortices remains approximately the same.
Changing the condensate’s radius from 15.5 to 8.9 does not
affect the nature of the PDF.
To further confirm the universality of our result, we

calculate velocity PDFs in two uniform periodic systems:
the first is a homogeneous 3D condensate, which obeys the
GPE without the trapping potential; a very isotropic tangle
of vortices is produced starting from a spatially random
phase [22] on a 1283 grid and velocity PDFs are computed
during the decay. The second is a 2D system of 50 positive
and 50 negative coreless vortex points (Onsager vortex gas
[23]) which do not reconnect. We find that the PDFs are
non-Gaussian in both cases [24] (see Fig. 2 bottom left and
right).
We have thus shown (under realistic experimental con-

ditions) how phase imprinting of a staggered array of
straight nonintersecting vortices can be used to study
quantum turbulence in atomic BECs. We have also found
that the decay of turbulence is faster in the presence of a
thermal cloud, which we have modeled in a simple way.
Our main result is that the statistics of the turbulent super-
fluid velocity components are non-Gaussian, and, unlike
ordinary turbulence, exhibit power-law tails similar to what
has been recently measured in turbulent superfluid 4He
[11]. Finding velocity statistics similar to 4He in these
relatively small systems means that atomic BECs can be
used to study quantum turbulence, despite the huge differ-
ence in the ratio of intervortex spacing to vortex core radius
in atomic BECs (�3 here) and in 4He (105 to 106). We
confirm our 3D result by repeating the calculation in 2D
trapped condensates with a different number of vortices
and dimensionless vortex line density, and essentially no
vortex reconnections, and in two uniform periodic systems:
3D homogeneous condensates and 2D gases of vortex
points.
Finally, what is the reason for the observed power-law

tails? Clearly vortex reconnection induce high-velocity

FIG. 3 (color online). Density (left) and velocity PDFs (right)
for a trapped 2D BEC (t0 ¼ 4:4, � ¼ 0). The maximum density
is n ¼ 2:06� 10�3. Left: 86 vortices (core radius � 2:66) can
be identified. Right: Plots of log10½PDFðviÞ� and corresponding
log10½gPDFðviÞ� vs vi, where the vx, vy velocity components

(sampled within the condensate edge) are blue circles (	) and
red triangles (5); the corresponding gPDF’s are black dotted and
dash-dotted lines.
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events [11], but the simplest explanation is contained in an
apparently unrelated study of Min et al. [25] of vortex-
filament and vortex-blob methods (computational tech-
niques alternative to the direct solution of the Navier-
Stokes equations of classical fluid mechanics) who showed
that velocity statistics of singular and non singular vortices
are qualitatively different. For singular vortices, PDFðviÞ /
v�3
i for an isolated vortex; for N vortices, provided that the

velocity contribution of each vortex can be considered an
independent random variable, the PDF converges to
Gaussian but extremely slowly: for example N � 106 vor-
tices (which is much larger than N � 102 of typical BEC
experiments) still produces significant tails [26]. Since
quantum fluids are characterized by singular vortex cores,
Ref. [25] explains the non-Gaussian PDFs observed in the
experiment [11] and in our calculations. Indeed, we have
directly verified the transition from power law to Gaussian
by artificially increasing the core [24] of the classical point
vortices. We have also found that in our 2D atomic con-
densates the correlation function Qxx ¼ hvxðxÞvxðxþ
rx̂Þi=hv2

xi (and similarly for Qyy, where h
i means average

over x) decays over a distance r of the order of the
intervortex spacing, but a weak 10% correlation remains
for larger r [24], consistently with [25]. The small value of
N is the most likely cause of the failure to converge to
Gaussian in small atomic condensates; in larger systems
such as turbulent superfluid helium the observed
Kolmogorov spectrum [7] implies correlation and organi-
zation over many scales and should play the main role in
preventing a normal distribution. The intermediate regime
poses an interesting problem both for theory and
experiments.

We conclude that, due to the singular nature of quantized
vorticity and the strict 1=r velocity field, the statistics of
velocity components are macroscopic observables which
distinguish between classical and quantum turbulence. It is
worth remarking [27] that for the same reason another such
observable is the pressure spectrum, which, in 3D quantum
turbulence, should obey a k�2 law (where k is the magni-

tude of the wave vector) rather than the k�7=3 scaling which

corresponds to the classical Kolmogorov k�5=3 spectrum of
the energy.
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