
Buckling of Liquid Columns

M. Habibi,1 Y. Rahmani,1,2 Daniel Bonn,2,3 and N.M. Ribe4

1Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159, Iran
2Van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
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Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a

buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto

unsuspected complexity involving three different modes—viscous, gravitational, and inertial—depending

on how the viscous forces that resist bending of the column are balanced. We also find that the nonlinear

evolution of the buckling exhibits a surprising multistability with three distinct states: steady stagnation

flow, ‘‘liquid rope coiling,’’ and a new state in which the column simultaneously folds periodically and

rotates about a vertical axis. The transitions among these states are subcritical, leading to a complex phase

diagram in which different combinations of states coexist in different regions of the parameter space.
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The buckling of solids is a classical subject in mechan-
ics. In 1757, Euler showed that an elastic column with
diameter d and Young’s modulus E buckles when its length

exceeds a critical value �ðE=PÞ1=2d, where P is the force
per unit area applied to its end [1]. The behavior of honey
falling onto toast shows that liquid columns can also
buckle. However, this phenomenon is harder to understand
because Young’s modulus is zero, whence Euler’s formula
would incorrectly predict buckling even for zero height.

How can liquid buckling then be understood? A vertical
liquid column can be created by ejecting a thin stream of
fluid through a hole of diameter d located a distance H
above a rigid surface. The stability of this situation was
first analyzed theoretically by [2], who predicted that
buckling begins when H exceeds d by a critical factor
that depends on the magnitudes of surface tension and
gravity relative to viscous forces. However, the steady
columnar shape analyzed by [2] is infinitely wide at the
bottom, and is therefore not realistic. As a result, the
analysis misses two additional buckling modes (analyzed
below) in which the relevant length scale is not d, but rather
the diameter d1 of the column at the bottom, where d1 � d
because gravity thins the fluid stream as it falls.

In this Letter we show that liquid buckling can involve
three different modes—viscous, gravitational, and iner-
tial—depending on how the viscous forces that resist the
bending of the column are balanced. We characterize these
regimes both experimentally and theoretically, and find
reasonable agreement between the two.We also investigate
the nonlinear evolution of the system after buckling. We
find that liquid columns can be multistable, exhibiting
three distinct states (stagnation flow, coiling, and rotatory
folding) in different combinations depending on the fall
height H, the viscosity �, and the flow rate Q. This is
surprising in the light of previous experiments with more

viscous fluid columns, in which multistability was either
not observed [3–5] or was limited to the coexistence of
multiple frequencies within the coiling state [6–10].
Experimental observations.—We used silicone oils with

density � ¼ 0:97 g=cm3, surface tension � ¼
21:5 dyn=cm, and viscosities � ¼ 330–2220 cS. The oil
fell from a hole of diameter d ¼ 2–4 mm in the bottom of a
constant-head reservoir onto a horizontal plate 5 cm in
diameter a distance H ¼ 2–1500 mm below. The flow
rate (Q ¼ 0:08–0:3 ml=s) was measured by weighing the
accumulated oil. Viscosities were measured using a
Rheometrics ARES cone-plate rheometer and were inde-
pendent of strain rate, indicating that the fluids are
Newtonian. In a typical series of experiments, �, d, and
Q were constant while H was varied.
We find that the liquid column can exhibit three distinct

steady or steady periodic states, depending on the values of
the experimental parameters: axisymmetric stagnation
flow [S; Fig. 1(h)], liquid rope coiling [C; Fig. 1(f)], and
a complex ‘‘rotatory folding’’ state [F; Figs. 1(a)–1(d)] that
has not been observed previously to our knowledge. The
column here folds back upon itself periodically while
simultaneously rotating about a vertical axis with a much
lower frequency. The images in Figs. 1(a)–1(d) are sepa-
rated by 1=4 of the rotation period, and show how the
overall shape depends on whether the folded structure is
viewed perpendicular to [Fig. 1(a)] or parallel to [Fig. 1(c)]
its longer lateral dimension.
To identify when the buckling transition from stagnation

flow to one of the other two states (C or F) occurs, we map
out a phase diagram of our observations as a function of �,
Q, and H. Since a three-dimensional diagram is hard to
read, we first show a projection of all our data onto the �-Q
plane (Fig. 2). Different states and combinations of them
are observed. The symbol S means that no buckling oc-
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curred at any height. The symbol C indicates that coiling
was the only state observed in the height range H1 � H �
H2, where H1 � 2:2 cm is the height where buckling first
occurred, and H2 � 30 cm is the height where the column
broke up episodically via capillary (Rayleigh) instability.
The notations Sþ C, Cþ F, and Sþ Cþ Fmean that the
states indicated were all observed at different times during
single experiments at fixed heights in the rangeH1 � H �
H2. Figure 1 and the linked video [11] show a continuous
time sequence of the three states (in the order F ! C ! S)
at a fixed height. In other experiments, the transitions C !
F, S ! C, F ! S, and S ! F were also observed. The
transitions between states were triggered by finite-
amplitude perturbations traveling down the column
[Figs. 1(e) and 1(g)], which in most cases were generated
by tapping the experimental apparatus lightly.

Figure 3 shows a cross section of the phase diagram at
Q ¼ 0:131 ml=s, displaying the sequence of states ob-
served as a function of fall height. No buckling occurs at
any height for � � 474 cS (green; S). For � � 598 cS,
buckling in the form of coiling (C) begins at H ¼ H1 ¼

1:5–2:3 cm (green to yellow; S to C). C is then the sole
state observed up to a maximum height (4.2–100 cm) that
increases with viscosity (yellow; C). For still greater
heights and � ¼ 598–1090 cS, C coexists with S (purple;
Sþ C) or Sþ F (blue; Sþ Cþ F). Finally, the column
becomes unstable to capillary breakup (red; B) when H
exceeds a value H2 ¼ 30–135 cm that increases with the
viscosity.
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FIG. 2 (color online). Experimentally determined phase dia-
gram in the space ð�;QÞ. In most cases, the hole diameter was
d ¼ 4 mm for � � 1450 cS and 2 mm for � � 1090 cS.
Experiments with � ¼ 1000 cS using both hole sizes confirm
that the phase diagram is independent of d. The dashed lines
indicate the range of values of Q used in Fig. 3.
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FIG. 3 (color online). Cross section Q ¼ 0:131� 0:006 ml=s
of the experimental phase diagram (Fig. 2), expanded in the third
(H) dimension. Red (upper left, symbol B) indicates capillary
breakup, and the remaining colors are as in Fig. 2. Solid
line: Numerically calculated coiling cessation surface separating
regions where coiling solutions exist (above or to the right) and
do not exist (below or to the left). Dashed line: Coiling cessation
surface (uppermost portion only) in the limit of zero surface
tension.

FIG. 1. Time sequence of photographs showing three possible
states of a viscous column with � ¼ 946 cS, Q ¼ 0:19 ml=s,
d ¼ 2:6 mm, and H ¼ 14 cm. (a)–(d) Folding with rotation,
(f) steady coiling, (h) axisymmetric stagnation flow. Panels (e)
and (g) show the finite-amplitude perturbations that trigger the
transitions between states. Numbers indicate time in ms.
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The phase diagram shows that multiple states can exist
for identical experimental conditions. Figure 4 shows the
angular frequencies (�) of coiling (C), folding (F), and
rotation of the folding column (R) as a function ofH for an
experiment with d ¼ 2 mm, � ¼ 950 cS, and Q ¼
0:132 ml=s, determined by counting frames in movies
taken with a rapid camera. Coiling begins at H ¼ H1 ¼
1:6 cm and persists up to H ¼ H2 ¼ 60 cm. Folding is
observed only for H � 11:8 cm. Its frequency is about
10% less than the coiling frequency, and the frequency of
the simultaneous rotation is a factor of 25–35 smaller still.
The coiling frequency predicted numerically for the same
parameters using the method of [6] (solid line) agrees well
with the experimental measurements. For comparison, the
dashed line shows the coiling frequency predicted in the
same way but without surface tension.

Onset and cessation of coiling: Theoretical analysis.—
Figures 2 and 3 show that buckling first occurs in the form
of coiling when both the fall height and the viscosity are
sufficiently large (roughly H > 2:4 cm and � > 450 cS),
indicating the existence of a critical surface in the
ðH; �;Q; dÞ parameter space. We now investigate the shape
of this surface using a mathematical model for a thin liquid
filament with inertia subject to gravitational, viscous, and
surface tension forces [6]. One possible approach [2]
would be to analyze the stability of a steady axisymmetric
stagnation flow to small perturbations to determine the
critical coiling onset surface. Unfortunately, no steady

stagnation state exists if the plate onto which the fluid falls
is impermeable. The only way to make the flow steady is to
allow the fluid to traverse the plate with a velocity
4Q=ð�d21Þ, where d1 is the diameter of the column at the
plate. Such a basic state is not realistic, and moreover
introduces an undesirable free parameter (d1).
To avoid these difficulties, we proceed ‘‘in reverse’’ by

starting from a finite-amplitude coiling solution and then
using a continuation procedure [6] to locate the ‘‘coiling
cessation surface’’ in the ðH; �;Q; dÞ space where the
solution ceases to exist. The coiling cessation surface
need not coincide with the coiling onset surface deter-
mined by a traditional linear stability analysis. Our nu-
merical procedure relies on the fact that the coiling
frequency�C is double-valued for ðH; �;Q; dÞ sufficiently
close to the cessation surface. The two branches meet in a
turning point beyond which no coiling solution exists, and
which can be located numerically by continuing a solution
on either branch toward the fold until the derivative of the
principal continuation parameter (typically H or �)
changes sign. Neglecting surface tension for the moment
in order to determine clean scaling laws, we find that the
coiling cessation surface has three asymptotic limits cor-
responding to three modes of coiling cessation: ‘‘viscous’’
(V), ‘‘gravitational’’ (G), and ‘‘inertial’’ (I).
In both the V and Gmodes, inertia is negligible. Coiling

ceases when H < Fð�Þd, where � ¼ ð�Q=gd4Þ1=4 and
Fð�Þ is shown in Fig. 5(a). The V mode corresponds to
the limit � � 1, in which gravity is negligible and the
column diameter �d everywhere. Coiling ceases when

H < 3:49d � HV: (1)

In the G mode (� � 0:5), gravity strongly stretches the
column, and coiling ceases when

H < 5:4ð�Q=gÞ1=4 � HG: (2)

When H exceeds the critical values HV or HG, we recover
the well-studied viscous and gravitational regimes, respec-
tively, of finite-amplitude coiling [6,7].
In the I (inertial) mode, coiling ceases when

� < 0:665ðgHQ2Þ1=4 � �I: (3)

Physically, (3) means that coiling ceases when the diameter
D of the coiled part of the column becomes comparable to
the diameter d1 of the column itself. Consider a coiling
column withH sufficiently large that inertia is important in
both the lowermost (coiled) part of the column and the
nearly vertical ‘‘tail’’ above it. In the coil, inertia is bal-

anced by viscous forces, soD� ð�d41=QÞ1=3 [5]. In the tail,
by contrast, inertia is balanced by gravity (free fall), im-

plying d1 � ðQ2=gHÞ1=4. Therefore D becomes compa-

rable to d1 when � drops below �ðgHQ2Þ1=4, in
agreement with (3). This analysis is further confirmed by
the visually obvious fact [Fig. 5(b)] that D � d1 in nu-
merical solutions of steady coiling with � ¼ �I [12].
Onset and cessation of coiling: Theory versus experi-

ment.—We consider first the limit in which both inertia and
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FIG. 4. Angular frequencies of coiling (C, solid squares),
folding (F, open circles), and rotation of the folding plane (R,
open triangles) as a function of height for an experiment with
d ¼ 2 mm, � ¼ 946 cS, and Q ¼ 0:132 ml=s. Solid
line: Numerical prediction of the coiling frequency using the
method of [6]. Dashed line: Same, but without surface tension.
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surface tension are negligible, corresponding to the V and
G modes of Fig. 5(a). Experiments in this limit, which
require small values of the dimensionless surface tension
parameter �=�gd2, were performed by [3]. The symbols in
Fig. 5(a) show the critical heights measured by [3] for
�=�gd2 ¼ 0:0063 and 0.014. They lie roughly midway
between our coiling cessation surface (solid line) and the
coiling onset surface of [2] (dashed line).

To compare our theoretical predictions with our own
experiments, in which surface tension cannot be neglected
(�=�gd2 2 ½0:14; 0:56	), we recalculate the coiling cessa-
tion surface using the ‘‘reverse’’ continuation procedure
described above but with surface tension included. The
cross section Q ¼ 0:13 ml=s of that surface is shown by
the solid black line in Fig. 3. It separates regions where
coiling solutions exist (above or to the right) and do not
exist (below or to the left). Apart from the additional effect
of surface tension, the nearly horizontal portion of the
curve (H < 2:5 cm) corresponds to the G mode of coiling
cessation, and the nearly vertical portion (� < 500 cS) to

the Imode. The critical viscosity �I ¼ 0:665ðgHQ2Þ1=4 for
the ‘‘pure’’ (zero surface tension) I mode is shown by the
dashed line at the upper left for comparison.

The coiling cessation surface in Fig. 3 agrees with the
experiments in the sense that coiling (C) is never observed
in the ‘‘no coiling’’ region below or to the left of it.

However, the observed cessation of coiling does not coin-
cide with the calculated coiling cessation surface, but
instead occurs somewhat above or to the right of it. At
the lower left of Fig. 3, for example, the coiling cessation
surface underpredicts the observed critical viscosity, which
lies somewhere in the range 474–598 cS, by 19%–44%.
The critical heights in the G mode (bottom center and
right) are also underpredicted, as we saw previously in
Fig. 5(a) for the data of [3]. One possible cause of these
discrepancies is hysteresis in the buckling transition, which
seems to be suggested by the noncoincidence of the coiling
onset surface (dashed line) and the coiling cessation sur-
face (solid line) in Fig. 5(a). We attempted to measure
hysteresis by first increasing and then decreasing the fall
height through the buckling transition, but the result was
inconclusive. Another possibility is that the ‘‘slender fila-
ment’’ equations used in most numerical coiling models
[2,6] are somewhat less accurate when the filament is
‘‘thick’’ [e.g., Fig. 5(b)]. Whatever the reason, we find it
encouraging that the theory predicts well the overall trend
of the observations, including the sharp transition between
the ‘‘critical height’’ and ‘‘critical viscosity’’ portions of
the surface where coiling ceases (Fig. 3).
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FIG. 5 (color online). (a) Cessation of steady coiling in the
inertia-free limit. Solid line: Coiling cessation surface H=d ¼
Fð�Þ separating regions where steady coiling solutions without
surface tension exist (above) and do not exist (below). The
portions corresponding to the V and G modes are indicated.
Dashed line: Coiling onset surface in the absence of surface
tension [2]. Symbols: Experimentally measured critical heights
[3] for silicone oil with �=�gd2 ¼ 0:0063 (circles) and 0.014
(squares). Images: Shapes of the upper part of the column for
H=d ¼ 4 and the values of � indicated by the arrows.
(b) Numerically determined shape of the lower part of a column
coiling in the inertial limit with the critical viscosity � ¼ �I, for
� ¼ 1:0 andH ¼ 40ð�2=gÞ1=3. The width of each grid square on
the bottom surface is 2ðQ2=gHÞ1=4.
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