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We consider the nonlinear tunneling of a plane wave through a small barrier potential in a medium with

self-defocusing, or repulsive, interactions. We show that nonlinearity can either suppress or enhance

transmission rates, determined by whether the initial kinetic energy is above or below the barrier height.

Associated with this threshold is the appearance of two distinct hysteresis loops, going clockwise or

counterclockwise, respectively. Spatial dynamics upon reflection and transmission reveals the formation

of dispersive shock waves (dark soliton trains) due to phase jumps at the interfaces and wave steepening

during propagation. The results are demonstrated experimentally for optical wave tunneling through a

refractive index defect but will hold for any Schrödinger system that contains a nonlinear junction.
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Wave tunneling at interfaces and through barriers is a
fundamental and wide-ranging problem in physics. While
the linear behavior is a textbook problem, the nonlinear
case has received far less attention. Even for a single
interface, nonlinearity can significantly modify the bound-
ary conditions, leading to multivalued transmission rates
[1,2]. For double interfaces, i.e., tunneling junctions [3–5],
the problem is further complicated by the nonlinear dy-
namics between the faces [6,7]. Here, we exploit photore-
fractive optical systems to study nonlinear wave tunneling
by small barrier potentials. We show numerically and
experimentally that self-defocusing nonlinearity can
greatly alter transmission, with either enhanced or sup-
pressed rates possible depending on a threshold defined
by the barrier height. In concert with this is the observation
of two distinct hysteresis loops, determined by the initial
kinetic energy (incidence angle) of the wave. The results
show the inherent versatility of low-index-contrast pho-
tonics and hold potential for practical bistable devices, e.g.,
all-optical switching and optical memory.

Theoretically, the signal wave dynamics can be modeled
by a nonlinear Schrödinger equation
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where c ðx; y; zÞ is the slowly varying amplitude of the
electric field as it propagates along the z axis, k0 ¼
2�n0=� is the wave number for light with wavelength
�=n0 in a homogeneous medium of refractive index n0,
U ¼ Uðx; yÞ is a refractive index defect, and �n is a non-
linear index change that depends on the intensity jc j2. For
example, the standard cubic nonlinear Schrödinger equa-
tion results from using the Kerr nonlinearity �n½IðrÞ� ¼
"2I, where "2 is the nonlinear coefficient. For the case of
photorefractive crystals, as used in the experiment, the
nonlinear index change is �n ¼ �ð1=2Þn30rEapp

�I=ð1þ
�IÞ, where r is the appropriate electro-optic coefficient

with respect to the applied field Eapp and the crystalline

axes and the relative intensity �I is the input intensity I
measured relative to a background (dark current) intensity
Ibackground [8]. For the self-defocusing nonlinearity consid-

ered here, there is very little difference in the dynamics
between the two cases [9]. Accordingly, we keep the Kerr
approximation in the analytics which follow, though we do
use the fully saturable case in the numerical modeling. As
is well known, Eq. (1) also describes the (macroscopic)
ground-state wave function for a fully condensed quantum
state, where the wave number k0 becomes the mass of the
underlying particle and the nonlinearity arises from the
mean-field contribution of (s-wave) interactions. The re-
sults here thus have application to a variety of quantum
systems as well, such as superfluids and Bose-Einstein
condensates.
It is clear from Eq. (1) that the (optical) wave function

can tunnel through a barrier (refractive index) potential,
with a rate that is modified by nonlinearity, not only
through an interaction-induced correction to the potential
energy difference but also through self-phase modifica-
tions to the boundary conditions. Even for a single inter-
face, the nonlinearity implies a host of new effects,
including multistability [1], splitting solutions for vector
beams [10], and enhanced refraction and reflection [2,11].
For double interfaces, i.e., junctions, most work has con-
centrated on a sequence of linear-nonlinear layers [2–5].
More recently, potential wells fully immersed in the non-
linear medium, with nonlinear-nonlinear boundaries, have
been considered [12–17]. However, these studies have
been limited to localized wave packets, either by using
atomic particles [12,13] or self-focused soliton beams [14–
17]. These latter waves are already nonlinear, and the
subsequent trapping-ejection dynamics are more akin to a
pinning-depinning transition. Further, the presence of self-
focusing nonlinearity precludes the use of extended (plane)
waves due to modulation instability. Here, we demonstrate
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that modified transmission rates can occur with self-
defocusing nonlinearity, through a purely repulsive barrier,
in the more fundamental case of plane-wave scattering [7].

To gain intuition, we first review the case of an interface
between two semi-infinite media of different base dielec-
tric constants "1 ¼ "0 and "2 ¼ "0 þ �"l. For simplicity,
we assume that each medium has the same nonlinear
response �"nl. Matching both the wave function and its
derivative at the interface gives Snell’s law and the Fresnel
equations. For a plane wave originally in medium 1, inci-
dent on medium 2 at an angle �1, Snell’s law
ðcos�2= cos�1Þ2 ¼ "1="2 becomes [1]

ð�1þ�2Þ2
�
�21��22þ

�"l
"0

��jE1j2
"0

�21

�
þ 4

�jE1j2
"0

�21 ¼ 0;

(2)

where �2 is the refracted angle in medium 2 and it has been
assumed that j�"l þ �"nlj � "0. For small incident an-
gles �1, e.g., near total internal reflection, Fresnel’s equa-
tions become independent of polarization and yield the
transmission and reflection coefficients t ¼ E2=E1 ¼
2�2=ð�1 þ �2Þ and r ¼ ð�2 � �1Þ=ð�2 þ �1Þ, respectively.
Using Eq. (2) in this relation gives

4ðt� 1Þ�21 þ
�
�"l
"o

� �jE1j2
"0

�21

�
t2 þ �jE1j2

"o
t4 ¼ 0: (3)

This fourth-order equation for transmission can support
bistability and hysteresis, with threshold values determined
by the strength of the nonlinearity.

For double interfaces, such as the junction shown in
Fig. 1(a), one cannot simply cascade the formulas from
one interface to the next, since there is nonlinear propaga-
tion inside the middle medium. This geometry, commonly
used for frustrated total internal reflection [3–5], needs a
more careful analysis. Here, we perform numerical simu-
lations on Eq. (1), emphasizing again that, unlike previous
studies [1–5], the nonlinearity permeates all three sections
of the junction. For simplicity, we fix the angle of incidence
(and thus initial kinetic energy) to 1� and the barrier width
to be 50 �m and examine the transmission of an incoming
plane wave as a function of barrier height and nonlinear
self-action [Fig. 1(b)]. Shown is the end result of tunneling,
obtained by integrating the total energy transmitted
through the barrier. In the linear case, there is the usual
transmission for low potentials and total internal reflection

for higher barriers, resulting in an exponentially decaying
evanescent wave. In the nonlinear case, there are two
distinct behaviors, depending on whether the initial inci-
dence angle (beam kinetic energy) is above or below the
barrier height. For small barrier heights, linear transport is
more efficient, as the self-defocusing nonlinearity (repul-
sive interaction) creates an enhanced pressure upon reflec-
tion. For stronger potentials, at and above the classical
transition point when the effective potential equals the
initial kinetic energy, nonlinearity suppresses the evanes-
cent decay. In this regime, the nonlinearity serves to index
match the incident wave with the defect, while the self-
repellant force of the tunneled light encourages further
transport across the barrier. Paradoxically, this nonlinear
effect is enhanced for narrower and higher barrier poten-
tials [7], as the nonlinear pressure within the sandwich
layer becomes more pronounced.
Experimentally, we observe these dynamics by consid-

ering plane-wave scattering in a self-defocusing photo-
refractive crystal. Defect and signal beams are created
by splitting cw light from a 532 nm laser and then
imaging each individually onto an 8 mm3 SBN:60
(Sr0:6Ba0:4Nb2O6) crystal. The defect is created by opti-
cally inducing an antiwaveguide in the medium [18,19]. To
do this, a relatively broad (200 �m) beam of ordinarily
polarized light is focused onto the crystal using a cylin-
drical lens; the width and polarization ensure near-
diffractionless propagation over the length of the crystal,
while the self-defocusing nonlinearity causes the bright
induction beam to locally lower the refractive index.
Changing the intensity of this writing beam allows control
of the index change (barrier height). An extraordinarily
polarized plane wave is then sent at an angle across this
defect. The output intensity is imaged into a CCD camera.
Experimental results of transmission across the defect

are shown in Fig. 1(c). As in the simulations [Fig. 1(b)],
there is a clear crossover behavior when the barrier height
equals the incident kinetic energy. Moreover, since the
tunneling is nonlinear, there is a bistability in the trans-
mission. To observe this, we keep the incident angle fixed
at 1.5� and change the intensity of the plane wave (thus
changing its self-energy). As shown in Fig. 2, the two
separate energy regions have two different hysteresis
loops. For incidence energies above the barrier height
(�n=n0 � 2� 10�4), nonlinearity serves to decrease
transmission, and the hysteresis loop goes clockwise
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FIG. 1 (color online). Wave tunneling
through a small barrier potential.
(a) Experimental scheme illustrating a
plane wave incident upon an optically
induced refractive index barrier.
(b) Numerical simulation of transmission
through the junction. (c) Experimental
results.
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[Figs. 2(a) and 2(b)]. For the opposite case, for incidence
energies below the barrier height (�n=n0 � 6� 10�4),
nonlinearity enhances transmission, and the loop runs
counterclockwise [Figs. 2(c) and 2(d)]. For this latter
hysteresis curve, our numerical results suggest the required
index change to complete the loop in the upper end is
�n=n0 � 10�3, which is beyond our crystal’s physical
limit of �n=n0 � 10�4. To our knowledge, the two sepa-
rate and reversed hysteresis trends have not been reported
before, in any physical system.

While Eq. (2) gives the transmission and reflection co-
efficients on either side of an interface, it does not say
anything about the subsequent nonlinear evolution of the
waves. To examine this, it is useful to rewrite the original
Schrödinger equation (1) using the polar (Madelung [20])

transformation c ðx; zÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx; zÞp

exp½iSðx; zÞ�
@�

@z
þr?ð��Þ ¼ 0; (4)

@�

@z
þ �r?� ¼ r?�nð�Þ þ r?Uþr?

�
1

2
ffiffiffiffi
�

p r2
?

ffiffiffiffi
�

p �
:

(5)

These equations describe the optical dynamics in terms of
ideal, Euler-like fluid flow, where � ¼ r?S is an effective
flow velocity and �nð�Þ can be interpreted as an optical
pressure (positive for defocusing nonlinearity). The last
term in Eq. (5), known as the ‘‘quantum pressure’’ in
condensed matter systems, is a third-order restorative

term resulting from diffraction. It characterizes spatial
dispersion and prevents discontinuities in the wave func-
tion, e.g., near the interfaces and at the steep gradients
arising from the convective derivatives. For example, the
competition between wave steepening and diffractive regu-
larization can result in spatial dispersive shock waves
[9,21].
The observation of shock waves is facilitated by having

a constant, low-level background, so that phase differences
from the nonlinearity appear as intensity variations [9,22].
This setup is different than the traditional transmission-
reflection geometry used above, in which a plane wave is
incident from the right side of the barrier and there is no
initial field on the left side. However, there are many
physical situations in which there is field everywhere,
e.g., a (super)fluid passing over and through a small ob-
stacle [23]. In this case, there can be significant dynamics
on the transmission side of the barrier as well, as the
transmitted field now has a background with which it can
interact.
Tunneling dynamics with initial field everywhere are

shown numerically in Fig. 3. In the linear case [Fig. 3(a)],
there are interference fringes formed near the interfaces as
phase accrues through transmission and reflection, but no
evolution in the wave fronts themselves. By contrast, in the
nonlinear case, energy is transported farther away from the
interfaces, creating a distributed profile with much lower
peak intensities, and there is significant evolution dynam-
ics. Both the reflected and transmitted waves self-steepen
as they propagate, eventually breaking into right- and left-
going dispersive shock waves [9]. These are the phase
jumps and dark soliton trains predicted for nonlinear tun-
neling in a superfluid [7]. Note especially that such shock

FIG. 3 (color online). Numerical simulation of full-field tun-
neling through a barrier. Plane-wave incidence onto a barrier
centered at X ¼ 0 with FWHM� 100 �m (a),(c) Linear case.
(b),(d) Nonlinear case. Note the difference in scale. Shown are
output pictures for (a),(b) weak (�n=n0 ¼ 2� 10�4) and (c),(d)
strong (�n=n0 ¼ 6� 10�4) barrier heights.
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FIG. 2 (color online). Optical hysteresis effects of wave tun-
neling through a barrier potential. Top row is numerical output
and bottom row is experimental output for an incidence angle of
1.5�. (a),(c) For a small barrier (�n=n0 ¼ 2� 10�4), the trans-
mission spectrum exhibits clockwise loops. (b),(d) For a high
barrier (�n=n0 ¼ 6� 10�4), the tunneling spectrum exhibits
counterclockwise loops.
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waves appear in the shadow region behind the defect as
well. Here, the darkness of the shadow implies a higher
refractive index (the medium is defocusing), drawing a
backflow towards the barrier and further encouraging the
tunneling of light through it. This counterpropagating flow,
caused here by the imposed defect, is also predicted to
occur self-consistently around vacuum (zero-intensity)
points in dispersive shock waves [24]. From the rest frame
of the angled wave, the barrier is being dragged through it.
There is now a (dispersive) bow shock created at the front
of the obstacle, while the dynamics behind the barrier is the
optical version of a (1D) fluid wake.

Experimental examples of this full-wave behavior are
shown in Fig. 4. In the linear case, there are interference
fringes upon reflection and transmission, with the highest
intensity peaks appearing at the barrier edges. In the non-
linear case, these peaks propagate faster, appearing a sig-
nificant distance from the junction walls. The light falloff
at the interfaces is also more gradual than in the linear case,
since tunneling and backflow are enhanced. As predicted
[7], dark solitons in the fluid wake appear only if the barrier

height exceeds a threshold value (�2� 10�4) for a given
incident velocity. These nonlinear effects become more
pronounced as the barrier height is increased.

In conclusion, we have shown, theoretically and experi-
mentally, that transmission through a small barrier poten-
tial can be greatly altered by nonlinearity. Bistability was
observed and, depending on the relative incidence energy,
the corresponding hysteresis loops would run clockwise or
counterclockwise with intensity. Phase singularities were
found on reflection and transmission, seeding the forma-
tion of dark solitons and dispersive shock waves. The
results were demonstrated for optical tunneling through a

small refractive index defect but will hold for any
Schrödinger system that contains a nonlinear junction.
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FIG. 4 (color online). Experimental observation of full-field tunneling through a barrier. Left column: Linear case; right column:
nolinear case. Shown are output pictures for (a),(b) weak (�n=n0 ¼ 2� 10�4), (c),(d) medium (�n=n0 ¼ 4� 10�4), and (e),(f)
strong (�n=n0 ¼ 6� 10�4) barrier heights. In all cases, the input angle was 1�.
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