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In the presence of a laser-induced spin-orbit coupling an interacting ultracold spinor Bose-Einstein

condensate may acquire a quasirelativistic character described by a nonlinear Dirac-like equation. We

show that as a result of the spin-orbit coupling and the nonlinearity the condensate may become self-

trapped, resembling the so-called chiral confinement, previously studied in the context of the massive

Thirring model. We first consider 1D geometries where the self-confined condensates present an

intriguing sinusoidal dependence on the interparticle interactions. We further show that multidimensional

chiral confinement is also possible under appropriate feasible laser arrangements, and discuss the

properties of 2D and 3D condensates, which differ significantly from the 1D case.
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Although cold gases are typically neutral, artificial elec-
tromagnetism may be induced by several means, including
rotation [1], manipulation of atoms in optical lattices [2–4],
and the use of laser arrangements [5]. Interestingly, semi-
nal experiments on optically created gauge fields have been
recently reported [6,7]. Artificial electromagnetism has
attracted growing attention in recent years, partially due
to the possibility of achieving non-Abelian gauge fields
[4,5], which establish fascinating links between cold gases
and high-energy physics [4,8,9]. A striking example is
given by the possibility of inducing quasirelativistic phys-
ics in cold atoms despite the extremely low velocities
involved [10]. In particular, under proper conditions cold
atoms experience an effective spin-orbit (SO) coupling,
which leads to a Dirac cone in the dispersion [11], resem-
bling the case of yet another paradigm of modern physics,
namely graphene [12,13]. Similar phenomena are expected
in cold atoms and graphene including Veselago lensing
[10,14,15].

Interparticle interactions lead to inherent nonlinearities
in Bose-Einstein condensates (BECs). At low-enough tem-
peratures a BEC is described by a nonlinear Schrödinger
equation as is the case also in nonlinear optics [1].
Resemblances between both fields have been successfully
explored in recent years, most remarkably concerning
solitons [16–20], for which nonlinearity and dispersion
compensate each other leading to self-confinement.
Nonlinearity is also important in high-energy physics,
where nonlinear Dirac equations (NLDEs), and more gen-
erally nonlinear spinor fields, have been studied exten-
sively since the pioneering works of Ivanenko [21], Weyl
[22], and Heisenberg [23]. Self-confinement has attracted
also in this context a large interest [24,25].

In this Letter we explore the nonlinear physics of a
multicomponent BEC (also called spinor BEC [26]) in
the presence of an optically induced SO coupling. In the
low-momentum limit, the spinor BEC may be described by
a particular type of two-component NLDE. We show that

under appropriate conditions, the BEC may become self-
trapped (in the absence of any external trap), resembling
chiral confinement, previously discussed in the context of
the massive Thirring and Gross-Neveu models [27,28]. In
the present Letter, the self-confinement results from the
interplay between the inherent chiral nature of the SO
coupled gas and the nonlinearities which stem from the
interparticle interactions. Contrary to two-component vec-
tor solitons, discussed in nonlinear optics and cold gases
[29,30], the two components are coupled not only by the
interactions, but also by the SO coupling as well. This
opens up novel scenarios for nonlinear atom optics with
condensates, characterized by remarkable new features of
the self-localized BECs, which in 1D present a peculiar
sinusoidal dependence of the interaction strength.
Furthermore, in short-range interacting BECs solitons are
stable only in 1D, whereas in 2D and 3D they are funda-
mentally unstable due to transversal excitations [31]. On
the contrary, as discussed below, 2D and even 3D self-
confinement becomes possible by means of feasible laser
arrangements, where the properties of the self-trapped
BECs depend strongly on dimensionality.
We consider bosons with an accessible internal tripod

scheme formed by three ground F ¼ 1 states (mF ¼
0;�1) and an excited F ¼ 0 state [e.g., 5S1=2ðF ¼ 1Þ $
5P3=2ðF ¼ 0Þ in 87Rb]. The ground-state levels with mF ¼
�1, 0, and 1 are linked to the excited state by three lasers
with, respectively, �þ, �, and �� polarizations, Rabi
frequencies �1;2;3ðrÞ, and phases S1;2;3ðrÞ. The atom-light

interaction leads to two dark states jD1;2ðrÞi, which are

linear superpositions of the ground states. If � ¼
ðPi�

2
i Þ1=2 is large compared to any other energy (differ-

ence between the laser frequencies, Doppler and Zeeman
shifts, interaction energy), we can neglect transitions out of
the dark-state manifold. Assuming that the atoms are
loaded into this manifold we may express any general
state as j�ðr; tÞi ¼ P

2
i¼1 �iðr; tÞjDiðrÞi, where �iðr; tÞ is

the wave function for atoms in jDii. By using the

PRL 104, 073603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 FEBRUARY 2010

0031-9007=10=104(7)=073603(4) 073603-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.073603


Schrödinger equation for the tripod scheme, including the
atomic motion, and projecting onto the dark-state mani-
fold, one finds the effective Schrödinger equation [5]

i@
@

@t
~� ¼

�
1

2m
ðp�AÞ2 þ V þ�

�
~�; (1)

where ~�
T ¼ ð�1;�2Þ, p is the momentum operator,

and m is the atomic mass. The spatial dependence of
the laser arrangement leads to an effective vector po-
tential matrix (also called the Mead-Berry connection
[32–34]) Anm ¼ i@hDnðrÞjrDmðrÞi. In addition, Vnm ¼P

1
j¼�1 UjhDnðrÞjjihjjDmðrÞi and �nm ¼ ð@2=2mÞ�

hDnðrÞjrBðrÞihBðrÞjrDmðrÞi are effective scalar potential
matrices, with jBðrÞi the bright state, i.e., the linear combi-
nation of ground states which couples with the excited
state. Above,Uj is the energy of the state j, which includes

the laser detunings from the corresponding transitions.
Note also that Uj may be controlled by means of homoge-

neous magnetic fields and/or microwave dressing (as in
recent experiments [6]).

The exact form of Anm, �nm, and Vnm depends on the
laser beams and their relative phase and intensity ratios. To
obtain nontrivial gauge potentials the light fields need to be
shaped carefully. There are many techniques to shape light
fields in 2D [35]. Shaping arbitrary light beams in 3D is
more challenging but certainly possible [36,37]. This re-
sults in a remarkable flexibility to achieve different gauge
fields [5]. In this Letter we are particularly interested in
externally inducing an effective SO coupling. This may be
achieved by employing three copropagating lasers along,
e.g., the z axis (S1 ¼ S2 ¼ S3 ¼ kz), with constant j�3j
and spatially dependent transversal profiles �1 ¼
j�3j cos�ðx; yÞ,�2 ¼ j�3j sin�ðx; yÞ. Assuming an inten-

sity modulation along x such that �ðrÞ ¼ � ffiffiffi
2

p
�x, we

obtain the effective SO couplingA ¼ �@��̂y ~ex [5], which

we employ in our discussion of the 1D localized solutions.
If the intensity modulation has a polar symmetry on the xy

plane, i.e.,�ðrÞ ¼ � ffiffiffi
2

p
�� (with �2 ¼ x2 þ y2), thenA ¼

�@��̂y ~e�, which we consider for the case of 2D chiral

confinement. Finally, setting U�1 ¼ U0 ¼ @��
@
2�2=2m, and U1 ¼ �U�1 � 2@�, one obtains for both

1D and 2D arrangements �þ V ¼ @��̂z. We will in the
following assume �< 0.

The term p � �, where � ¼ �̂y ~ex;� leads to a single-

atom dispersion law characterized by two branches

E�ðpÞ ¼ ðp2 þ @
2�2Þ=2m � ð@2�2 þ @

2�2p2=m2Þ1=2.
The E� branch presents two minima (or a continuous ring
of minima). As a result the ground state of the many-body
system may become fragmented [38]. Fragmentation
would preclude the use of the Gross-Pitaevskii (GP) for-
malism employed below. The analysis is, however, well
justified if we consider an initial (well-defined) scalar BEC
in one of the ground-state levels, and adiabatically switch
on the lasers, which allows a transfer of the BEC (in the
absence of dissipation) into the dark-state manifold [6,39].

Interatomic interactions are crucial in quantum gases.
We assume the interaction energy is much smaller than
@�, such that we remain in the dark-state manifold. Note
that the states j�1; 0; 1i constitute a spin-1 Bose gas. Short-
range interactions are dominantly s wave and occur only in
channels with total spin 0 and 2, characterized by the
scattering lengths a0;2 [26]. Although a0 and a2 are in

principle different, in practice they are very similar.
Below we consider for simplicity a0 ¼ a2 ¼ a and repul-
sive interactions, a > 0. For a0 � a2 the system remains in
the dark-state manifold, but the equations are much more
complicated and may present collisionally induced spin
rotations. The interactions in d dimensions are character-

ized by a coupling constant g ¼ 4�@2aN=mð ffiffiffiffiffiffiffi
2�

p
l?Þ3�d,

where N is the particle number, and l? is the oscillator
length associated to a harmonic transversal confinement.
Within the GP formalism, the interacting bosons in the

dark-state manifold are described by a spinor GP-like
equation with a SO coupling, which in its time-
independent form becomes

� ~� ¼
�
1

2m
ðpþ @��Þ2 þ @��̂z þ g ~�

y � ~�

�
~�; (2)

where� is the chemical potential. Note that the interaction

term g ~�
y � ~� ¼ gj�1j2 þ gj�2j2 is particularly simple

since a0 ¼ a2. For a wave packet with hpi ¼ 0 and mo-

mentum width �p � 2@�,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@j�jmp

we can safely neglect
the p2 term in Eq. (2). This results in a NLDE:

" ~� ¼ ½i� � r þ �̂z � � ~�
y � ~�� ~�; (3)

where " ¼ �=@�, � ¼ g=@j�jld0 , and the unit of length is

l0 ¼ @�=mj�j. As discussed below, the solutions which
follow have a typical width * l0. As a consequence, ne-
glecting the p2 term is valid only for j�j � 2@�2=m. Note
that " can here be negative, which allows for an interesting
symmetry in the problem. Equation (3) can also be ob-
tained if �> 0, g < 0, and A ! �A [which may be
achieved by choosing ��ðrÞ instead of �ðrÞ]. Hence, by
properly choosing the sign of � and A, which are easily
controlled externally, one can get similar solutions for both
repulsive and attractive interatomic interactions.
Interestingly, it has been shown in the context of chiral

confinement in the massive Thirring and Gross-Neveu
models that Eq. (3) supports in the 1D case an exact self-
localized solution [27,28]. In the following we show that
these 1D self-trapped solutions present remarkable prop-
erties, which have not been explored in the high-energy
context due to the limitations of the original physical
models. In addition, we show that multidimensional con-
finement is also possible, although it differs significantly
from the 1D case.
We study first a 1D scenario (along x), assuming a strong

yz harmonic trap with frequency !?, such that @!? �
j�j. We consider a SO coupling p � � ¼ px�̂y. Using

~� ¼
	ðcos’; sin’ÞT , Eq. (3) transforms into

PRL 104, 073603 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 FEBRUARY 2010

073603-2



d’

dx
¼ "� cosð2’Þ þ �	2; (4)

d	

dx
¼ �	 sinð2’Þ: (5)

which lead to 	2ð"2 þ �	2=2� cos2’Þ ¼ const.
Imposing localization (	 ! 0 for x ! �1) one obtains
"þ �	2=2� cos2’ ¼ 0. Inserting this conservation law
back in (4) and (5) we obtain the localized solution [27]

’ðxÞ ¼ tan�1½ ffiffiffiffi



p
tanhð�xÞ�; (6)

	2ðxÞ ¼ 2ð1� "Þ=�
cosh2ð�xÞ þ 
sinh2ð�xÞ ; (7)

where we have introduced the notation 
 ¼ ð1� "Þ=ð1þ
"Þ and � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
. From these expressions it is clear that

only solutions with j"j< 1 (i.e., j�j< @j�j) are localized.
Imposing the normalization of the 1D wave functionR1

�1 dx	2 ¼ 1 leads to the condition � ¼ 4tan�1
ffiffiffiffi



p
.

Hence, both normalization and localization conditions
are fulfilled only for 0< �< 2� [40]. In this regime the
energy presents a remarkable sinusoidal dependence " ¼
cosð�=2Þ. Note that contrary to the high-energy case,
where the constraint to positive energy fermion states
demands � � � [27], in ultracold gases �> � is also
possible. This leads to a peculiar behavior of the BEC
wave function when � approaches 2�. For 0< �< 2�
the half width at half maximum of the soliton is

arccosh½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3þ "Þ=2p �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2

p
which diverges at " ¼ 1,

i.e., � ¼ 0, due to the absence of interactions. On the
contrary, for " ¼ 1 or � ¼ 2�, the localized solution
does exist but acquires a Lorentzian form 1=ð1þ 4x2Þ.

These localized wave functions are solutions of the
linear in p Eq. (3). However the quadratic term p2 induces
a departure from these solutions, which becomes signifi-
cant at a time scale �	 2m=@�2. We have quantitatively
analyzed the effects of p2 by numerically solving Eq. (2)
for different values of 2mj�j=@�2 and of �, using as the
initial condition the above mentioned localized solutions.
Figure 1 shows typical results. As expected, the linear
solutions are only significantly modified for times t * �.
The p2 term does not actually lead to a destruction of the
soliton but to a modulation of its width and height.

Because of the form of ’ðxÞ, the relative distribution of
the population between the two components also presents a
peculiar dependence in �. The population imbalance 
between jD1i and jD2i becomes  ¼ R

dx	2 cosð2’Þ ¼
2
� sinð�=2Þ, which monotonically decreases from 1 (all

atoms in jD1i) at � ¼ 0 to 0 (equal admixture of both
dark states) at � ¼ 2�. The density profile of both com-
ponents is also quite different, since jD2i presents a node at
x ¼ 0, whereas jD1i is maximal at the center.

Note that the discussed sinusoidal dependence has its
origin in the 1D normalization of 	2. We should hence
expect a rather different behavior in higher dimensions.
This is indeed the case. We consider in the following a 2D
scenario on the xy plane with a strong confinement along z,

in the presence of a SO coupling p � � ¼ p�̂y, where

p2 ¼ p2
x þ p2

y. Equations (6) and (7) can be readily gen-

eralized to the 2D case by replacing x by the radial co-
ordinate �. The normalization of (7) is, however, dif-
ferent, 2�

R
�	2ð�Þd� ¼ 1, which requires � ¼

4�½s ln2� LðsÞ�= sinð2sÞ, where " ¼ cosð2sÞ (0 � s �
�=2) and LðsÞ ¼ �R

s
0 lnðcoss0Þds0 is the Lobachevsky

function [41]. By inverting the expression for � we obtain
"ð�Þ (Fig. 2). As mentioned above a localized solution
requires j"j � 1, which is only possible for �> �c ¼
2� ln2 ’ 4:36 [42]. Therefore, contrary to the 1D localiza-
tion which may occur for 0<�< 2�, the 2D localized
BEC requires a minimal interaction strength �c at which
the BEC width diverges. In addition, both localization and
normalization conditions are simultaneously fulfilled for
arbitrary � > �c. For increasing � > �c, " decreases
monotonically from 1 to �1. For � * 15, " ’ �1 and
the localized wave function converges to a Lorentzian
shape 	2ð�Þ ¼ 8���1ð1þ 4�2Þ�1. Figure 3 shows 2D
localized BECs. Note that the behavior of the population
imbalance  in 2D differs from the 1D case. In particular
for " ! 1,  ! 1 as in 1D, and for " ! �1,  ! �1; i.e.,
jD2i dominates. Note also that as in 1D the jD2i state has a
minimum at the center, whereas jD1i is there maximal.
This broken symmetry between jD1i and jD2i is induced
by the ��z term in the equation of motion.
Finally, a similar solution may occur also in 3D if p �

� ¼ p�̂y, where p
2 ¼ p2

x þ p2
y þ p2

z . In this case the 3D
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FIG. 1 (color online). Normalized width w=w0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dxx2	ðtÞ2=R dxx2	ð0Þ2

q
of the localized 1D solutions for

2m�=@�2 ¼ 0:01 and � ¼ �=3. In the inset, we depict the
time evolution of the total BEC density.

ε γ

2D

3D

FIG. 2. Energy " as a function of the interaction strength � for
a 2D and 3D arrangement. Note the existence of a 2D solution
for � > 4:36 and a double 3D solution for � > 11:94.
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normalization requires that � ¼ 2sð�2 � 4s2Þ=3sin2ð2sÞ
(Fig. 2). The localized solution exists only for � > �c ’
11:94 [43]. Contrary to 2D where the BEC width diverges
at �c and hence the wave function experiences a smooth
crossover from localization into delocalization, in 3D at
� ¼ �c, " < 1 and the BEC width remains finite. Hence in
3D there is an abrupt transition between localization and
delocalization regimes. Finally, let us point out that, inter-
estingly, for �> �c, there are actually two localized solu-
tions. At � ! 1, one of the solutions becomes unbound
and the other a Lorentzian shaped function.

In summary, the interplay between interactions and an
optically induced SO coupling may lead to self-localized
BECs in 1D, but also in 2D and 3D. Self-localization in
NLDE was previously studied in the context of chiral
confinement in massive Thirring and Gross-Neveu models.
However, for the case of cold gases novel parameter re-
gimes (and dimensionalities) are possible, allowing for
remarkably rich physics which depends strongly on the
system dimensionality, ranging from a sinusoidal interac-
tion dependence in 1D, to two possible self-trapped solu-
tions in 3D scenarios. These results provide exciting new
perspectives for the nonlinear physics of condensates in
artificially-induced gauge fields.
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FIG. 3 (color online). Left column: 2D solution for " ¼ �0:99
and � ¼ 18:63. The total density 	2 is shown at the top. The
density of each component �2

1;2 is strikingly different, with

component 1 forming a peak in the center. Most particles occupy
component 2. Right column: " ¼ 0:99 and � ¼ 4:36.
Component 1 forms a peak in the center where now most
particles are located. The x, y coordinates are in units of l0
and the densities in units of 1=l20 (see text).
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