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Ground-State Degeneracies Leave Recognizable Topological Scars in the Electronic Density

Roi Baer

Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 14 October 2009; published 16 February 2010)

In Kohn-Sham density functional theory (KS DFT) a fictitious system of noninteracting particles is
constructed having the same ground-state (GS) density as the physical system of interest. A fundamental
open question in DFT concerns the ability of an exact KS calculation to spot and characterize the GS
degeneracies in the physical system. In this Letter we provide theoretical evidence suggesting that the GS
density, as a function of position on a 2D manifold of parameters affecting the external potential, is
“topologically scarred” in a distinct way by degeneracies. These scars are sufficiently detailed to enable
determination of the positions of degeneracies and even the associated Berry phases. We conclude that an
exact KS calculation can spot and characterize the degeneracies of the physical system.
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Electronic degeneracies in molecular systems have an
important role in many photochemical and photophysical
processes. Degeneracies induce nonadiabatic transitions
[1] but may also affect adiabatic dynamics, due to their
geometric phase effects [2]. As a consequence, consider-
able efforts go into identification and location of degener-
acies on the manifold of nuclear coordinates. First
principles approaches for these tasks use correlated elec-
tronic wave functions [3] which quickly become computa-
tionally intensive as the size of systems grows. Because of
the lack of theoretical understanding and practical difficul-
ties in applications, Kohn-Sham (KS) density functional
(DFT) methods [4] are not considered appropriate for
degeneracies, in spite of their great success in other aspects
of electronic structure [5].

KS DFT relies on the mapping of an ‘‘interacting”
electron system onto a ‘‘noninteracting” electron system,
the KS system, having the same ground-state (GS) density.
Most references to degeneracies by DFT researchers refer
to existence, uniqueness, and differentiability of the map-
ping [6]. A rather unique study of degeneracies concluded
that degeneracies, while rare in the potential manifold, are
abundant in the ‘““density manifold” [7]: if a GS density is
chosen at random, there is no way to determine a priori
whether it corresponds to nondegenerate, doubly degener-
ate, etc. GSs. This explains the practical difficulty for
application of DFT to degeneracies. However, one should
note that a physical electronic density (of some molecule,
for example) is not “a random density.” It is pure-state
v-representable (PVR), meaning that the density is deriv-
able from a single wave function, as opposed to the more
general ensemble density, which is a weighted sum of pure
densities derived from degenerate states. If the physical
potential is varied by some parameters on a manifold, we
obtain corresponding “‘physical”” PVR densities.

Our study here concentrates on these special but relevant
density degeneracies, which may be more tractable than
the general case discussed in Ref. [7]. We show here that
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such densities carry the original degeneracy information in
the form of topological nonanalyticities we call “‘scars.” A
related issue is how (if at all) the Longuet-Higgins sign
change or Berry phase [8] is imprinted on the density.
Since the density is derivable from the square of the GS,
sign information is expected to be absent [9]. Berry phases
are also related to nonadiabatic coupling terms [10—12] and
accessible through linear-response time-dependent DFT
[13]. This Letter, however, is concerned with ““static’’ DFT.

We consider twofold degeneracies and real
Hamiltonians (no magnetic interactions). A basic notion
is a 2D manifold of arbitrary parameters, X and Y, that
affect the external potential of a particle system (system I).
The external potential is a function on the manifold
v(r; X, Y), and by solution of the Schrodinger equation, it
produces a manifold of GS densities n(r; X, Y). From the
noncrossing rule it follows that in most 2D manifolds
twofold degeneracies will appear as isolated points and
higher degeneracies are practically never seen [7,14]. A
twofold degeneracy point can be assumed at the origin and
polar coordinates used: X = Rcos¢, Y = Rsin¢. At any
point near the origin degenerate perturbation theory shows
that the ground and first excited eigenstates are orthogonal
linear combinations of the two degenerate orthonormal
eigenstates ‘Ifj (j = 1,2) at the origin:

[, (R, $)) = cosO|W,) + sind| V),

1
|V, (R, ¢)) = sinf|¥,) — cosd|P,), M

with mixing angle 6 a function of R and ¢. We can speak
of the ¢ dependent limit: 6(¢p) = limg_(0(R, ¢). The
density on the manifold n(r; R, ¢) at point R, ¢ is easily
calculated from Eq. (1), and the limit density n(r; ¢) =
limg_on(r; R, @) is
n(r; @) = n,(r) + n_(r) cos26(d) + n,(r)sin26(e),
(2)

where 2n. = ny; * ny, n;(r) = (‘i’ilﬁ(r)lli’), and 7A(r)
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is the particle density operator. Equation (2) shows that the
limit density depends on ¢: the density we see when going
into the degeneracy in one direction is different from that
going in from another direction (Fig. 1).

A compact way to characterize the scar is by considering
the derivative n'(r; ¢p) with respect to ¢: a scar is present if
it is not identically zero [n/(r; $)5£0]. We showed above
that a degeneracy imposes a scar.

Having discussed the density n(r;R, ¢) in system I,
which is PVR, we now consider this same density but
impose it on some new system of particles with different
particle-particle interaction. We call this system II. By the
Hohenberg-Kohn theorem there is a unique potential re-
producing it, either as a pure-state or an ensemble density.
However, since this density carries the scar at the origin the
potentials there must reflect some irregularity. If the po-
tential itself is unscarred [i.e., v};(r; R — 0, ¢) = 0] then
the underlying wave function in system II must be degen-
erate, in such a way as to reproduce the density scar
imposed by system I. However, the potential vy(r; R, ¢)
in system II, which reproduces the scarred density, may
itself be “scarred” [for example, when the density is
scarred, the local density approximation for exchange po-
tential n(r; R, ¢)'/3 is scarred as well]. In this case, the KS
system might not develop a degeneracy at the origin even
though the scar is reproduced.

What about the converse? Suppose the density is not
scarred at the origin; can system II develop a degeneracy
there? If ‘i’k, k=1,..., g, are the degenerate states, then
the first g eigenstates in the immediate neighborhood, at
direction ¢, are W;(¢) = 3 5_, Ojk(d))\ifk, where O are
the elements of an orthogonal matrix. In the absence
of a scar, the limit density n(r;¢) = le w;i(¢) X
(W;()|a(r)|¥;(¢)) has to be independent of ¢, leading
to the requirement that Zle w ()01 ()01 (¢h) is inde-
pendent of ¢. Unless special circumstances prevail, this
can happen only if w; are all equal; i.e., w;(¢) = é. We
conclude that if the density is unscarred at the origin, then
either it is PVR, in which case there is no degeneracy, or it

n(ér)

I

<y

FIG. 1. The “topological scar’: n(¢,) and n(¢,) are limit
densities along two distinct paths converging into the same
manifold point. If they are different a GS degeneracy exists in
system I.

is an equal-weight ensemble (EWE) of all g degenerate
states.

Let us now consider what one can deduce from a KS
DFT calculation pertaining to an external potential (such as
that resulting from the nuclei in a molecule), assuming the
exact exchange-correlation potential is accessible. As one
varies the potential parameters, the KS potential changes
and the density of the physical system is reproduced,
including the positions of its scars, signaling degeneracies
in the physical system. As explained above, a correspond-
ing degeneracy in the KS system is not mandatory, unless
the KS potential itself is “unscarred.” An absence of a
density scar implies nondegeneracy in both systems. In the
KS system this latter assertion arises because one cannot
smoothly move from g-fold into g’-fold EWEs so the level
of degeneracy on the manifold is “locked.”

The next question is whether the Berry phase in the
physical system traversing a loop around the scar can be
reproduced by the exact KS calculation. The Berry phase
[8] B is equal to 7 (0) if the real GS W (R, ¢) changes
(does not change) its sign when carried smoothly once
around the loop. If 8 = 7 (0) the degeneracy is a ““Jahn-
Teller” or conical (“Renner-Teller*) intersection
[10,11,15]. In system I, the Berry phase can be calculated
as an integral over the nonadiabatic coupling terms
[10,16]:

p=lim [0 R QIR S)dS B

and since from Eq. (1) (W|W}) = ¢, all we need for
computing B is to know 6'(¢). We now show that this
can be inferred directly from the density scar itself. Taking
the third derivative of n(r, ¢) in Eq. (2), we obtain

n'" — 3gn// — (_40/2 _ 2g2 + g')n’, (4)

where g = 0"/6’. Using, for example, the x-y components
of the dipole moment (DM) d(¢) = [ n(r; ¢)rd*r we find
after some manipulation

3gdy

d/// _ d// d/// —
x ~3gdy _ 4y = —407 — 2% + g (5)

d, d

From the first equality one obtains g = % ‘:1—', where a =
dld, — djd, =d” X d', and so

0'(¢) = Ba(¢)'3, (6)

where B is a constant [this constant can be determined by
using the second equality in Eq. (5)]. The value of () —
0(0) can thus be determined by integrating Eq. (6) and, in
particular, the Berry phase is recovered. This method of
using DM data is distinct from the Hush-Mulliken diaba-
tization (HMD) (see [17] and references therein). We use
only GS DMs, while HMD uses the DM in fwo adiabatic
states as well as the transition DM.
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We demonstrate the validity of this method by a numeri-
cal example using the H; molecular system within an
extended Hiickel (EH) approximation. Two fixed hydrogen
nuclei are placed on the x-y plane at Cartesian points R| =
(=3/2,4/3/2,0)a, R, = (3/2,/3/2,0)a, where /3a =
1.4a, is the equilateral triangle edge length. Our 2D sub-
manifold for the position of the third atom is the x-y plane
and the H; degeneracy point is at the origin. The basis set
for the EH calculation includes three Slater type 1s orbi-

tals, one from each atom, y,(r) = 27%2¢ ¢ Ral o =
1,2, 3 with exponent { = 1.3a, ! The Hamiltonian matrix
Hgy has diagonal elements (Hgy),o = —0.5E), and off-
diagonal elements (EEH)QB = KSup, a, B =1,2,3, where
Sap = (Xalxp) is the overlap matrix and K = 0.875E,,.
The generalized eigenvalue equation HgyZ = SZE is
solved and the molecular orbital coefficients matrix Z is
used to construct the density matrix P = ZpZ", where p is
the diagonal matrix of occupation numbers [diag(p) =
(2,1, 0) for three electrons in the H; doublet state]. The
DM in the Cartesian direction w = x, y is computed from
d, = tr(D,P), where (D,,) . = e{x,|r,|xz) are the DM
matrix elements in the basis set.

We examine three cases where the third atom R; moves
along a circular loop encircling the point C with radius R,
shown in Fig. 2. In the first two cases the loop encircles the
origin, so we expect the phase difference () — 6(0) to be
an odd multiple of 7r, while in the third case, not surround-

ing a CI, it should be 0. We calculated the GS DM compo-
nents for Ny = 100 equally spaced angles in the range
[0, 277], and from them, using discrete Fourier methods for
calculating the required derivatives, we computed the func-
tion a(¢) and the mixing angle 6(¢), both shown in Fig. 2
for each case. For case 1 the radius R is small enough for
the theory to hold well and the final value of the mixing
angle was 0.94 7. Case 2 shows a very different behavior of
a(¢), but the final value of 6 is still 0.9577. The method is
useful even when the loop is nonconcentric. In case 3 the
path does not encircle the degeneracy and the mixing angle
remains small along the path, its final value returning close
to 0. It is difficult to enlarge R in this method (accuracy
quickly degrades and B is no longer independent of ¢)
which breaks down when 6" acquires significantly nega-
tive values.

Summary and discussion.—We found that a pure-state
density on some 2D parameter manifold produces topo-
logical scars at degeneracy points and only there. Such a
scar is sufficiently detailed to allow reconstruction of the
mixing angle and the Berry phase associated with the
ground-state wave function of a small loop around the
scar. Any system of particles (“‘system II’*) that has this
density as its ground state will thus “know’” about the de-
generacies in system . Our results do not contradict the
findings of Ref. [7], namely, that g-fold and g’-fold degen-
eracies have the same measure in density space. This is
because our manifold makes a special cut through density
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FIG. 2. Reconstruction of the mixing angle of H; using the components of the electronic DM calculated along circular paths using
the extended Hiickel approximation. Three paths in the x-y plane are considered, each of radius Ra, centered around the point C as
depicted in each panel. The CI is located at the origin. Top panels: The function a(¢). Bottom panels: The mixing angle 6(¢).
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space by considering densities that are known to be PVR in
at least one system (system I) on the manifold of interest.

While our findings show that exact KS DFT can pinpoint
and characterize degeneracies in the physical system, any
implementation of KS DFT uses approximate functionals.
In this latter case one cannot assume that the densities thus
produced are PVR in any given system, and there is no
guarantee that the scars in the approximate KS system are
points. Indeed, they could be 1D lines or even 2D regions
of non-EWE densities (which we proved do not exist in the
exact KS system). However, since non-EWEs cannot form
without breaking symmetries, perhaps these problems do
not easily arise at least in symmetrical molecules. The next
step for developing DFT as a tool for studying degeneracies
in molecules should therefore be benchmarking of the
accuracy and reliability of various approximate functionals
for locating and characterizing degeneracies in molecules.
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