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Localization properties of noninteracting quantum particles in one-dimensional incommensurate

lattices are investigated with an exponential short-range hopping that is beyond the minimal nearest-

neighbor tight-binding model. Energy dependent mobility edges are analytically predicted in this model

and verified with numerical calculations. The results are then mapped to the continuum Schrödinger

equation, and an approximate analytical expression for the localization phase diagram and the energy

dependent mobility edges in the ground band is obtained.
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Anderson localization, the localization of electronic
Bloch waves due to interference in disordered potentials,
is one of the fundamental quantum phenomena in nature
and is the transport mechanism behind metal-insulator
phase transitions in solids [1]. Although this mechanism
was first proposed over 50 years ago, direct observation of
Anderson localization has been notoriously difficult due to
the problems in reliably controlling disorder in solid-state
systems. But recent advances in the manipulation of ultra-
cold atoms offer a completely new, well-controlled tool in
directly observing such fundamental quantum phenomena.
A notable example is the recent work done by Billy et al.
who observed Anderson localization in a diffuse Bose-
Einstein condensate in a one-dimensional (1D) waveguide
with a disordered laser speckle potential [2]. Another
recent example is the work done by Roati et al. who
observed 1DAubry-André (AA) localization (a phase tran-
sition closely related to Anderson localization [3]) of cold
atoms in an incommensurate quasiperiodic potential [4].
These advances highlight the potential of ultracold atoms
to experimentally probe fundamental quantum localization
phenomena that previously could only be studied indirectly
or through numerical calculations. Cold atomic systems
offer precise control of the background potential, and the
noninteracting limit is easily achievable with a very dilute
gas of either bosons or fermions. This is the context (and
the motivation) of the current work, where we introduce a
new and theoretically exact 1D localization model with
mobility edges that should be observable in cold atomic
systems.

One-dimensional localization phenomena are tradition-
ally studied with the nearest-neighbor tight-binding model:

Eun ¼ t1ðun�1 þ unþ1Þ þ Vnun; (1)

where t1 is the hopping term representing tunneling be-
tween nearest neighboring sites and Vn is the on site
disordered potential [1,2] or the incommensurate potential
[3,4]. The simplicity of (1) allows for exact theoretical
statements in certain cases. For example, the 1D disordered

Anderson model allows for only localized eigenstates at all
energies independent of how weak the disorder may be [1].
The AA model with the 1D incommensurate potential has
either all eigenstates extended or localized depending on
the strength of the potential [3]. Thus quantum localization
in these 1D tight-binding models is, in some sense, trivial
because all states are either localized or extended with no
energy dependent localization transition as happens, for
example, in the 3D Anderson model [5]. However, there is
growing interest in exploring deviations from the tight-
binding assumption [6,7]. Ultracold atoms loaded into
optical lattices with controllable depths provide an experi-
mental tool to study transport beyond the tight-binding
regime, where mobility edges are likely. In this Letter,
we introduce an exact analytically solvable 1D localization
model which has an energy dependent mobility edge. We
believe that our model should be realizable in ultracold 1D
atomic systems, and we show that our theoretical findings
extend to the general Schrödinger equation description
well outside the tight-binding regime where cold atom
localization experiments [2,4] are typically carried out.
To highlight the new physics that may be observed with

ultracold atoms in shallow lattices, we study localization in
incommensurate lattices with an implicit short-range rather
than nearest-neighbor hopping model. In particular, we
study the tight-binding model:

Eun ¼ X
n0�n

te�pjn�n0jun0 þ V cosð2��nþ �Þun; (2)

where � is an irrational number, and p > 0. This is a
simple exponential hopping generalization of the AA
model. We prove that this model has energy dependent
mobility edges (contrary to the AA model), and we verify
our analytical results by numerically diagonalizing (2). We
then show that our analytical results from this model can be
used to predict the energy dependent mobility edges in the
more fundamental Schrödinger equation for noninteracting
particles in shallow, incommensurate optical lattices:
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where V0 is the strength of the primary lattice and V1 is the
strength of the secondary lattice (<V0). We verify these
results by numerically solving (3) and examining the ei-
genstates. The Schrödinger equation described by (3) is
often called the two-color or the bichromatic potential
problem [4].

The AA model, where the potential in (1) is given by
Vn ¼ V cosð2��nþ �Þ, has been shown to be self-dual
under the transformation

un ¼ X
m

fme
imð2��nþ�Þei�n; (4)

when V ¼ 2t1 [3]. Since (4) transforms spatially localized
states into spatially extended states and vice versa, it is
argued in [3] that all eigenstates are extended for V < 2t1
and localized for V > 2t1. The eigenspectrum at V ¼ 2t1
has been shown to be singular continuous and the eigen-
values produce a Cantor-set structure [8]. This sharp tran-
sition between localized and extended states is often
referred to as (AA) duality. Obviously, the AA duality
inherent in (1) does not apply to (2) and, in particular,
the transformation defined by (4) does not work for the
finite range hopping model.

We now show below that (2) allows for energy depen-
dent duality points (i.e., a mobility edge). Define the
parameter p0 > 0 such that

ðEþ tÞ � V cosð2��nþ �Þ ¼ !2Tn; (5)

Tn ¼ coshðp0Þ � cosð2��nþ �Þ
sinhðp0Þ ; (6)

with !2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEþ tÞ2 � V2
p

. It follows that ðEþ tÞ=V ¼
coshðp0Þ and (2) can be cast in the form:

!2Tnun ¼ X
n0
te�pjn�n0jun0 : (7)

If we now consider the transformation

~um ¼ X
n

eimð2��nþ�ÞTnun; (8)

and note that for p > 0 we have the identity,

T�1
n ¼ X

m

e�pjmjeimð2��nþ�Þ; (9)

then it follows that the state ~um satisfies the equation

!2 ~Tm~um ¼ X
m0
te�p0jm�m0j~um0 ; (10)

where ~Tm is given by

~T m ¼ coshðpÞ � cosð2��mþ �Þ
sinhðpÞ : (11)

We see that (7) is self-dual under the transformation (8)
when p ¼ p0. Following AA [3], we conjecture that all
states are localized for p > p0 and extended for p < p0.
Then it follows that the condition for localization is given
by the expression

coshðpÞ ¼ Eþ t

V
: (12)

It is straightforward to check that this condition becomes
the AA condition where (2) becomes (1) in the limit p !
1 (i.e., V ¼ 2t1). The condition given by (12) is the central
new result of our work, showing that the model defined by
(2) has an energy dependent mobility edge characterized
by a transcendental equation.
To explicitly verify (12), we numerically diagonalize (2)

and study the spatial extent of the wave functions. To do
this we calculate the inverse participation ratio (IPR),

IPR ðiÞ ¼
P

n juðiÞn j4
ðPn juðiÞn j2Þ2 ; (13)

where the superscript i denote the ith eigenstate. The IPR
of a wave function approaches zero for spatially extended
wave functions and is finite for localized wave functions.
Figure 1 plots energy eigenvalues and the IPR of the

corresponding wave functions for (2) as a function of

potential strength V, with � ¼ ð ffiffiffi
5

p � 1Þ=2 and p ¼ 1:5
[Fig. 1(a)] and p ¼ 4 [Fig. 1(b)]. The solid line in the
figure represents the boundary given in (12). As expected
from our conjecture, IPR values are approximately zero for
energies above the boundary and are finite for energies
below the boundary, indicating that (12) indeed defines the
mobility edge for (2).
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FIG. 1 (color online). Energy eigenvalues of (2) with 500
lattice sites and � ¼ ð ffiffiffi

5
p � 1Þ=2 for (a) p ¼ 1:5 and

(b) p ¼ 4. The shading of the energy curves indicates the
magnitude of the inverse participation ratio for the correspond-
ing wave functions. The solid line represents the analytical
boundary between spatially localized and spatially extended
states.

PRL 104, 070601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 FEBRUARY 2010

070601-2



Figure 2 displays eigenstates for p ¼ 1:5 and V ¼ 1:8 at
three different energy eigenvalues which lie above, below,
and near the mobility edge given by (12). We see that the
wave function is localized for low energies [Fig. 2(a)],
extended for high energies [Fig. 2(b)], and critical near
the boundary [Fig. 2(c)]. In Fig. 3, we show the IPR of the
wave functions as a function of eigenstate number i and
potential strength V. The solid curves represent the pre-
dicted boundary given by (12), and the dashed line is the
AA self-duality condition (V ¼ 2t1). We see in Fig. 3 that
our mobility edge prediction agrees well with the numeri-
cal IPR calculations. In the case where p is relatively small,
the phase diagram shows clear mobility edges and differs
markedly from the AA condition. For large p, the slope of
the localization condition is steep and is approximately
equivalent to the AA condition, as expected.

To understand the relevance of these results to ultracold
atoms in optical lattices, we draw the connection between
the exponential hopping tight-binding model given in (2)
and the fundamental single particle Schrödinger equation
in (3). To do this, we study the ground band Wannier
functions [9], wnðxÞ of (3) for V1 ¼ 0, and approximate
the matrix elements of the Hamiltonian in the Wannier
basis. Using the Gaussian approximation for the ground
band Wannier states, the potential strength V in (2) is
approximated by the expression

V � V1

2
exp

�
� �2ffiffiffiffiffiffiffiffiffiffiffiffiffi

V0=Er

p
�
; (14)

where Er � ð@kLÞ2=2m is the recoil energy. Also from this
approximation, we have for the constant energy difference
between (2) and (3)

E0 ¼ hwnjH0jwni � 1

2
ðV0e

�
ffiffiffiffiffiffiffiffiffiffi
Er=V0

p
þ ffiffiffiffiffiffiffiffiffiffiffi

V0Er

p Þ; (15)

where H0 is the Hamiltonian corresponding to (3) with

V1 ¼ 0. The hopping coefficient t can be estimated using
the deep lattice approximation for the ground bandwidth:

t � 4ffiffiffiffi
�

p Er

�
V0

Er

�
3=4

exp

�
�2

ffiffiffiffiffiffi
V0

Er

s
þ p

�
: (16)

To estimate the exponential decay term p we make use of
Kohn’s results on the Kramers function and its relation to
the asymptotic behavior of the Wannier functions [10,11].
Using the deep lattice approximation for the effective mass
at the top ground band edge of H0, we obtain for p the
approximation [12]

p � cosh�1

�
1þW1=2

2W0

�
; (17)

whereW0 is the bandwidth of the ground band andW1=2 is

the width of the first band gap. The ratio W1=2=W0 can be

estimated using properties of the Mathieu functions:

W1=2

W0

�
ffiffiffiffi
�

p
8

�
V0

Er

��1=4
exp

�
2

ffiffiffiffiffiffi
V0

Er

s �
: (18)

Finally, using (17) and (14), the mobility edge for the 1D
incommensurate lattice Schrödinger equation, (3), is given
by

2 exp

�
�2ffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=Er

p
�
ðE� E0 þ tÞ ¼ V1

�
1þW1=2

2W0

�
; (19)

where E0 is estimated by (15). The condition in (19) is the
Schrödinger equation equivalent of (12).
To examine the accuracy of (19), we numerically inte-

grate (3) to obtain the energy eigenvalues and wave func-
tions and calculate the IPR [obtained with (13) by
replacing the sums with spatial integrals]. In our calcula-

tions, we set kL ¼ 1, � ¼ ð ffiffiffi
5

p � 1Þ=2, m ¼ 1. The size of
the system is given by L ¼ Na where a is the lattice
constant. N is chosen to be 500 and (3) is sampled over

0 50 100 150 200 250 300 350 400 450 500
site number

|u
n|

a) low E state below edge

b) high E state above edge

c) state near boundary

FIG. 2 (color online). Eigenstates of (2) with 500 lattice sites,
� ¼ ð ffiffiffi

5
p � 1Þ=2, V ¼ 1:8, and p ¼ 1:5 for different energy

eigenvalues: (a) low energy localized state below the mobility
edge, (b) high energy extended state above the mobility edge,
and (c) critical state near the mobility edge.

FIG. 3 (color online). Inverse participation ratios of all eigen-
states of (2) with 500 lattice sites and � ¼ ð ffiffiffi

5
p � 1Þ=2 for

(a) p ¼ 1:5 and (b) p ¼ 4. The solid curves represent the
analytical boundary between spatially localized and spatially
extended states and the dashed lines represent the Aubry-
André condition.
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80 000 points. Figure 4 gives eigenstates at three different
energy eigenvalues for V0 ¼ 2Er and V1 ¼ 1:43Er (similar
to Fig. 2). Similar to the results in the tight-binding model,
we see that for a fixed potential strength an eigenstate can
be localized for low energies [Fig. 4(a)], extended for high
energies [Fig. 4(b)], and critical near the boundary
[Fig. 4(c)]. Figure 5 gives calculated IPR values as a
function of eigenstate number and V1 for the first N eigen-
states (equivalent to the ground band when V1 ¼ 0). The
solid curves give the analytical boundary between local-
ized and extended states as given by (19). We see in Fig. 5
that our analytical prediction is in good agreement with our
IPR calculations. We also note that (19) is dependent on
incommensuration and may predict no localization transi-

tion for �2=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=Er

p � 1, where the slope of the boundary
in E� V1 space is essentially flat. This is consistent with
numerical results reported earlier in [3] where localization
transitions in (3) are observed to be dependent on incom-
mensuration for shallow lattices.

We have predicted the existence of an exact, analytic,
energy dependent mobility edge in an incommensurate 1D
model, which should be experimentally accessible in cold
atomic systems. This mobility edge is the energy depen-
dent generalization of the AA self-duality concept, and as
such, the eigenstates precisely at the mobility edge are
critical (i.e., neither localized nor extended), with the
mobility edge spectrum being singular continuous. The
fact that our predicted tight-binding mobility edge survives
the continuum Schrödinger equation limit indicates that
our exact prediction should be observable in cold atomic
systems. We note that we have explicitly numerically
verified, [13], that the exponential hopping constraint is
not crucial—in fact, any bichromatic Schrödinger equation
with hopping amplitudes falling off in some manner (e.g.,
power law, Gaussian, etc.) would approximately exhibit
the predicted 1D mobility edges. We also note that the

slowly varying trap potential confining the cold atoms, not
included in our calculations, should not affect our conclu-
sions because it only acts as a finite size cutoff for the
extended states, which is incorporated in our numerical
simulations.
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FIG. 4 (color online). Eigenstates of (3) with 500 lattice sites,
� ¼ ð ffiffiffi

5
p � 1Þ=2, V0 ¼ 2Er, and V1 ¼ 1:43Er for different en-

ergy eigenvalues: (a) low energy state below mobility edge,
(b) high energy state above mobility edge, and (c) critical state
near the predicted mobility edge.

FIG. 5 (color online). Inverse participation ratios of the ap-
proximate ground band eigenstates of (3) with � ¼ ð ffiffiffi

5
p � 1Þ=2

for (a) V0 ¼ 2Er and (b) V0 ¼ 5Er. The solid curves represent
the analytical boundary between spatially localized and spatially
extended states.
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