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We study the scaling behavior of dispersion potentials and forces under very general conditions. We

prove that a rescaling of an arbitrary geometric arrangement by a factor a changes the atom–atom and

atom–body potentials in the long-distance limit by factors 1=a7 and 1=a4, respectively, and the Casimir

force per unit area by 1=a4. In the short-distance regime, electric and magnetic bodies lead to different

scaling behavior. As applications, we present scaling functions for two atom–body potentials and display

the equipotential lines of a plate-assisted two-atom potential.
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Scaling laws play a prominent role in the formulation of
many physical problems and occur naturally when study-
ing critical phenomena in particle physics, condensed mat-
ter, and statistical mechanics. One example is percolation
theory [1], which has found applications in understanding
forest fires, oil-field extraction, and even measurement-
based quantum computing [2].

Dispersion forces are effective quantum electromagnetic
forces between neutral, but polarizable objects [3,4].
Casimir and Polder found that dispersion forces are gov-
erned by simple power laws in the long-distance limit [5]:
The potential of a ground state atom at a distance zA from a
perfectly conducting plate and that of two ground state
atoms separated by a distance rAB are proportional to 1=z4A
and 1=r7AB, respectively, while the force per unit area
between two perfectly conducting plates at separation z
follows a 1=z4 law. Dispersion forces have since been
studied for various bodies of simple shapes such as semi-
infinite half spaces [6], plates of finite thickness [7,8],
cylinders [9], and spheres [10,11]. In all of these cases,
simple scaling laws have been found for the long- and
short-distance limits.

For electrostatic or gravitational interactions, power
laws for the forces between extended objects follow im-
mediately by a volume integration of 1=r potentials.
Dispersion forces, on the contrary, are due to an infinite
hierarchy of microscopic N-point potentials [12], leading
to a nontrivial geometry dependence. Many-body effects
and the nontrivial dependence on geometry are at the heart
of current endeavors to gain a thorough theoretical [13] and
experimental understanding [14] of the Casimir effect and
to exploit it in nanotechnology applications [15]. The lack
of simple analytical solutions for dispersion forces in
complex scenarios necessitates general qualitative laws
for what is achievable. Along these lines, it has been

proven that mirror-symmetric arrangements always lead
to attractive Casimir forces [16], and duality invariance has
been established as a tool to study magnetoelectric effects
[17]. Scaling laws of the kind observed for simple objects
would be a powerful addition to this toolbox of general
laws, provided that they can be formulated beyond the
special cases mentioned above.
With this in mind, we will demonstrate in this Letter that

for objects of arbitrary shapes, dispersion interactions in
the long- and short-distance limits obey scaling laws, and
we will identify the respective scaling powers. Our proof
relies on the known dependence of dispersion potentials on
the atomic polarizability �ð!Þ, body permittivity "ðr; !Þ,
and permeability �ðr; !Þ, where the latter determines the
electromagnetic Green tensor
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In terms of these quantities, the Casimir–Polder (CP) po-
tential of a single electric ground state atom and the
van der Waals (vdW) potential of two such atoms read
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(I: unit tensor) [4]. We will first define the general scaling
problem and then solve it separately in the long- and short-
distance cases.

The scaling problem.—Consider an arbitrary arrange-
ment of linearly responding bodies characterized by their
permittivity "ðr; !Þ and permeability �ðr; !Þ, with one or
two atoms at positions rA and rB [Fig. 1(i)]. The scaled
arrangement (scaling factor a � 0) is described by the
permittivity and permeability

�"ðr; !Þ ¼ "ðr=a;!Þ; ��ðr; !Þ ¼ �ðr=a;!Þ; (5)

with the atomic positions being scaled accordingly: �rA ¼
arA, �rB ¼ arB [Fig. 1(ii)].

Interactions for long distances.—We speak of the long-
distance regimewhen all distances are much larger than the
wavelengths of the atomic and medium response functions.
In this case, we can approximate the latter by their static
values, �ð!Þ ’ �, "ðr; !Þ ’ "ðrÞ, �ðr; !Þ ’ �ðrÞ, so the
Green tensor is determined by
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The Green tensor of the scaled arrangement obeys
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By renaming r � ar, ! � !=a and using Eq. (5) and
�ðarÞ ¼ �ðrÞ=a3, we find that
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Comparison with Eq. (6) reveals the scaling

�Gðar; ar0; !=aÞ ¼ ð1=aÞGðr; r0; !Þ: (9)

Substitution into the CP potential (2) leads to
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The CP force thus scales as �FðarAÞ ¼ ð1=a5ÞFðrAÞ.
Analogously, Eq. (9) can be used to derive the following
scaling laws for the vdW potential (3) and the Casimir
force per unit area (4),

�UðarA; arBÞ ¼ ð1=a7ÞUðrA; rBÞ; (11)

�TðarÞ ¼ ð1=a4ÞTðrÞ; (12)

so the total Casimir force behaves as �F ¼ ð1=a2ÞF.
Interactions for short distances.—In the short-distance

or nonretarded regime, all distances are much smaller than
the characteristic atomic and medium wavelengths. A sim-
ple example shows that here no universal scaling law exists
in the general case: The nonretarded CP potential of an
atom at distance zA from a magnetoelectric half space reads
[8]

UðzAÞ ¼ �C3

z3A
þ C1

zA
; (13)

which is incompatible with a relation of the form (10).
However, scaling laws can still be formulated by distin-

guishing between purely electric and purely magnetic en-
vironments. For purely electric bodies, the Green tensor (1)
can be given by the Dyson equation [4]
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(� ¼ r� r0) is the free-space Green tensor. In the short-
distance limit !�=c� 1, the latter reduces to

G ð0Þðr; r0; !Þ ¼ � c2½I� 3e�e��
4�!2�3

� c2

3!2
�ð�Þ: (16)

Starting from the analogous Dyson equation for the scaled
Green tensor, we make the substitutions r � ar, r0 � ar0,
and s � as. After using Eq. (5) and the scaling

FIG. 1. (i) Original and (ii) scaled configurations of bodies and
atoms (a ¼ 1:4).
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Gð0Þðar; ar0; !Þ ¼ ð1=a3ÞGð0Þðr; r0; !Þ of Eq. (16), a com-
parison with (14) reveals the scaling

�Gðar; ar0; !Þ ¼ ð1=a3ÞGðr; r0; !Þ (17)

for the full Green tensor. Substitution into Eqs. (2)–(4)
immediately implies the scaling laws

�UðarAÞ ¼ ð1=a3ÞUðrAÞ; (18)

�UðarA; arBÞ ¼ ð1=a6ÞUðrA; rBÞ; (19)

�TðarÞ ¼ ð1=a3ÞTðrÞ (20)

where we have used the fact that Gð1Þ dominates over r�
Gð1Þ � r

 0
in the short-distance limit.

For an arrangement of purely magnetic bodies, the non-
retarded Green tensor obeys the Dyson equation
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We read off (1=a2) scalings for r�Gð0Þ and Gð0Þ � r
 0
, so

following similar steps as above, the Dyson Eq. (21) to-
gether with Eq. (5) implies

�G ð1Þðar; ar0; !Þ ¼ ð1=aÞGð1Þðr; r0; !Þ: (23)

Using Eq. (2), the nonretarded CP potential scales as

�UðarAÞ ¼ ð1=aÞUðrAÞ (24)

for purely magnetic bodies. The vdW potential (3) contains
contributions from the bulk and scattering Green tensors
with different scalings. We separate it into a free-space part

Uð0Þ that contains only Gð0Þ and scales according to

Eq. (19) and a body-induced part Uð1Þ. The latter is domi-

nated by the mixed terms Gð0ÞGð1Þ for purely magnetic
bodies in the short-distance limit; it scales as

�U ð1ÞðarA; arBÞ ¼ ð1=a4ÞUð1ÞðrA; rBÞ: (25)

The Casimir force (4) is dominated by r�Gð1Þ � r
 0

with
its (1=a3) scaling for purely magnetic bodies, so that

�TðarÞ ¼ ð1=a3ÞTðrÞ: (26)

Applications.—In the simplest situations where disper-
sion forces depend on a single distance parameter, the
scaling laws directly determine the dependence on that
parameter. For instance, the long-distance scaling laws

(10)–(12) imply the power laws for dispersion interactions
involving atoms and perfectly conducting plates mentioned
above.
For a class of geometries involving a distance parameter

z and a single size parameter d, the scaling laws can be
employed to write potentials and forces in the form
ðCk=z

kÞfðd=zÞ, all relevant information being contained
in the scaling function fðxÞ. In Fig. 2, we display the
scaling functions for the potential of an atom at distance
zA from a Si plate of thickness d (x ¼ d=zA) in the long-
distance limit [8] and for the nonretarded potential of a
perfectly conducting sphere of radius R (x ¼ R=zA) [11].
The plate potential reaches its half-space limit with

associated 1=z4A asymptote already for x ¼ d=zA * 0:5,
showing that finite thickness effects can be neglected for
moderately thick plates even for dielectrics. For very thin
plates with x ¼ d=zA & 0:1, the scale function of the plate
is linear for small x, implying a x=z4A / 1=z5A potential. A
rather abrupt change between the two power laws occurs
between the two extremes.
The scale function of the sphere saturates much more

slowly to its large-x asymptote where a 1=z3A half-space
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FIG. 2. Scale functions for the potential of an atom in front of a
Si plate (solid line) and near a perfectly conducting sphere
(dashed line).

FIG. 3. Retarded vdW potential next to a perfectly conducting
plate. Atom B is held at different fixed positions (large dot). The
thick contour denotes U=Uð0Þ ¼ 1, values are increasing towards
the exterior of this contour in steps of 0.02.
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potential is observed. This indicates that proximity force
approximations [18] should be used with care. The scale
function of the sphere potential is cubic for small x, cor-
responding to a x3=z3A / 1=z6A asymptote.

As a more complex example, we consider the vdW
potential of two atoms A and B in front of a perfectly
conducting plate in the long-distance limit [19]. In
Fig. 3(i), we show the plate-induced enhancement of the
potential with respect to its free-space value for a given
distance of atom B from the plate. The results for a differ-
ent distance can then be obtained from a scaling trans-
formation cf. Fig. 3(ii). The plate is seen to enhance the
interatomic interaction in two lobe-shaped regions to the
left and right of atom B. This implies that for a thin slab of
an atomic gas at distance z from the plate, the atom–atom
correlation function will be enhanced at interatomic dis-
tances r ’ 2:5z corresponding to the centers of the lobes.
By virtue of scale invariance, this holds for all z that are
compatible with the long-distance limit.

Summary and perspective.—By considering the scaling
behavior for the respective Green tensors, we have derived
universal scaling laws for dispersion interactions in the
long- and short-distance limits as summarized in Table I.
Scaling laws indicate the absence of a characteristic length
scale of the system. For dispersion potentials, the typical
interatomic distances and the wavelengths of atomic and
body response functions give two such characteristic
length scales. The nonretarded scaling laws are hence
only valid for distances well between these two length
scales while the long-range one is restricted to distances
well above the latter.

The scaling laws may be used to deduce the functional
dependence of dispersion forces in the case where they
depend on only a single parameter. In more complex cases,
the knowledge of a potential for a body of given size can be
used to infer the potential for a similar body of different
size. In particular, equipotential lines are invariant under a

scale transformation. More complex applications include
bodies with surface roughness. The duality invariance of
dispersion forces [17] can be used to extend our results to
magnetic atoms.
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TABLE I. Scaling laws for the CP potential, free-space, and
body-induced vdW potentials and the Casimir pressure.

Distance Long Short

Bodies Magnetoelectric Electric Magnetic

UðrAÞ 1=a4 1=a3 1=a

Uð0ÞðrA; rBÞ 1=a7 1=a6 1=a6

Uð1ÞðrA; rBÞ 1=a7 1=a6 1=a4

TðrÞ 1=a4 1=a3 1=a3
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