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We build upon work by C.K. Law [Phys. Rev. A 71, 034306 (2005)] to show in general that the

entanglement between two fermions largely determines the extent to which the pair behaves like an

elementary boson. Specifically, we derive upper and lower bounds on a quantity �Nþ1=�N that governs the

bosonic character of a pair of fermions when N such pairs approximately share the same wave function.

Our bounds depend on the purity of the single-particle density matrix, an indicator of entanglement, and

demonstrate that if the entanglement is sufficiently strong, the quantity �Nþ1=�N approaches its ideal

bosonic value.
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Under what circumstances can a pair of fermions be
treated as an elementary boson? Many authors have done
detailed studies of this question, as it applies, for example,
to atomic Bose-Einstein condensates [1,2], excitons [2–4],
and Cooper pairs in superconductors [5]. In a 2005 paper,
Law presented evidence that the question can be answered
in general in terms of entanglement: two fermions can be
treated as an elementary boson if they are sufficiently
entangled [6]. Consider, for example, a single hydrogen
atom in a harmonic trap. Within the atom, the proton and
electron are strongly entangled with respect to their posi-
tion variables; for example, wherever the proton might be
found—it could be anywhere in the trap—the electron is
sure to be nearby. Law suggests that this entanglement is
the essential property underlying the (approximate) bo-
sonic behavior of the composite particle, allowing, for
example, a collection of many hydrogen atoms to form a
Bose-Einstein condensate [7].

Specifically, his hypothesis can be expressed as follows:
for a single composite particle in a pure state, let P be the
purity of the reduced state of either of the two component
fermions—P is small when the entanglement between the
two particles is large (see below for the definition)—and let
N be the number of composite particles that approximately
share the given quantum state. Then the composite parti-
cles can be treated as bosons as long as NP � 1. That is,
according to this hypothesis, the quantity 1=P roughly
quantifies the number of particles one can put into the
same pure state, before the composite nature of the par-
ticles begins to interfere appreciably with their ideal bo-
sonic behavior. The bosonic character is quantified, in
Law’s paper, by the ratio �Nþ1=�N , where �N is a normal-
ization factor for the state with N composite particles. The
quantity �Nþ1=�N captures the deviation from the ideal
bosonic case when another composite particle is added to
theN-particle state. For ideal bosons, wewould have �N ¼
1 for all N.

Law’s argument in support of his hypothesis assumes a
two-particle wave function within a certain class, charac-

terized by a specific form of the eigenvalues of the reduced
density matrix of either particle, and he notes that it would
be desirable to extend the argument to more general wave
functions. Such a generalization is the aim of the present
Letter. With no restrictions on the form of the two-particle
wave function, we use the purity to place upper and lower
bounds on �Nþ1=�N , and we show that these bounds are
the tightest possible of the given form. In this way we
obtain a more general connection between entanglement
and bosonic character.
Before proceeding to our general argument, it may be

instructive to consider the special case of the hydrogen

atom. Let �ð ~R; ~rÞ be the wave function of a single hydro-

gen atom in a harmonic trap, with ~R and ~r being the
position coordinates of the proton and electron, respec-
tively. For simplicity we assume that the proton is suffi-
ciently massive compared to the electron that we can write
this wave function as

�ð ~R; ~rÞ ¼ c ð ~RÞ�ð~r� ~RÞ; (1)

where c is the ground-state harmonic oscillator wave

function c ð ~RÞ ¼ ð1=�3=4b3=2Þ expð�R2=2b2Þ and � is
the ground-state wave function of the electron in a hydro-

gen atom:�ð ~rÞ ¼ ð1=�1=2a3=20 Þ expð�r=a0Þ. Here a0 is the
Bohr radius and b is a length parameter characterizing the
size of the trap.
The purity P of the reduced state of either of the two

particles is defined by P ¼ Tr�2, where � is the density
matrix of the particle in question. (Because the pair is in a
pure state, the purities of the two particles are guaranteed to
be equal.) Note that P takes values between zero and one.
For the hydrogen atom, the purity of the proton is given by

P ¼
Z

�ð ~R; ~R0Þ�ð ~R0; ~RÞd ~Rd ~R0; (2)

where the proton’s density matrix � is �ð ~R; ~R0Þ ¼R
�ð ~R; ~rÞ��ð ~R0; ~rÞd~r. We assume that c ð ~R0Þ can be ap-

proximated by c ð ~RÞ when j ~R0 � ~Rj is of the order of the
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Bohr radius. With this assumption, upon inserting Eq. (1)
into the definition (2) of P, we get

P ¼
Z

jc ð ~RÞj4d ~R
Z

j�ð ~qÞj2d ~q; (3)

where�ð ~qÞ ¼ R
�ð ~rÞ��ð~r� ~qÞd~r. The integrations can be

done, and one finds that

P ¼ 33

4
ffiffiffiffiffiffiffi
2�

p
�
a0
b

�
3
: (4)

Thus the purity depends, not surprisingly, on the ratio of
the volume of an atom to the volume of the trap, and Law’s
condition NP � 1 essentially says that the space available
to each atom must be large compared to its size. This
condition is in rough agreement with the condition that
the number of atoms be small compared to the maximum
occupation number as computed in Ref. [2].

We now turn to the general argument.
Consider a composite particle formed from two distin-

guishable, fundamental fermions A and B with wave func-
tion �ðxA; xBÞ. (The x’s could be vectors in any number of
dimensions.) Writing this wave function in its Schmidt
decomposition yields

�ðxA; xBÞ ¼
X
p

�1=2
p �ðAÞ

p ðxAÞ�ðBÞ
p ðxBÞ: (5)

Here �ðAÞ
p and �ðBÞ

p are the Schmidt modes, constituting
orthonormal bases for the states of particles A and B, and
the �p’s, which are the eigenvalues of each of the single-

particle density matrices, are non-negative real numbers
satisfying

P
p�p ¼ 1. In terms of the �p’s, the purity can

be written as P ¼ P
p�

2
p. Again, a small value of the purity

indicates a large entanglement.
In terms of creation operators, the state�ðxA; xBÞ can be

written as

�ðxA; xBÞ ¼
X
p

�1=2
p aypbypj0i; (6)

where ayp creates an A particle in the state �ðAÞ
p ðxAÞ, byp

creates a B particle in the state �ðBÞ
p ðxBÞ, and j0i is the

vacuum state. The composite particle creation operator cy,
which creates a pair of A and B particles in the state

�ðxA; xBÞ, is defined to be cy ¼ P
p�

1=2
p aypbyp. Our analy-

sis, like Law’s, aims to determine to what extent the
operators cy and c act like bosonic creation and annihila-
tion operators when applied to a state consisting of N
composite particles.

Consider the state obtained by antisymmetrizing the

product state �ðxð1ÞA ; xð1ÞB Þ � � ��ðxðNÞ
A ; xðNÞ

B Þ. In terms of the

creation operator cy, we can write the properly antisym-
metrized state as

jNi ¼ 1ffiffiffiffiffiffi
N!

p ��1=2
N ðcyÞNj0i: (7)

Here �N is a normalization constant necessary because cy
is not a perfect bosonic creation operator. The quantity �N

is given by [6,8]

�N ¼ 1

N!
h0jcNðcyÞNj0i ¼ X0

�p1
�p2

. . .�pN
; (8)

where we use the symbol
P0

to indicate that the sum is over
all the indices appearing in the summand, with the restric-
tion that all the indices must take distinct values. (This
expression gives �N ¼ 0 if the number N exceeds the
number of Schmidt modes with nonzero Schmidt coeffi-
cient. In that case ðcyÞNj0i ¼ 0 and we cannot define the
state jNi.) Again, for ideal bosons, we would have �N ¼ 1.
Note that cyjNi is not necessarily equal toffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p jN þ 1i. Rather, it follows from the definition (7)
that

cyjNi ¼ �Nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p jN þ 1i; (9)

where

�N ¼
ffiffiffiffiffiffiffiffiffiffiffi
�N

�N�1

s
: (10)

Similarly, instead of cjNi ¼ ffiffiffiffi
N

p jN � 1i, we have
cjNi ¼ �N

ffiffiffiffi
N

p jN � 1i þ j�Ni; (11)

where j�Ni is orthogonal to jN � 1i. For perfect bosons,
we would have h�Nj�Ni ¼ 0, but the actual value is [6,8]

h�Nj�Ni ¼ 1� �Nþ1

�N

� N

�
�N

�N�1

� �Nþ1

�N

�
: (12)

It is possible to show that the ratio �Nþ1=�N which
appears in Eqs. (10) and (12) is strictly nonincreasing as
N increases (more precisely, the quantity �2

N � �Nþ1�N�1

is non-negative) [9], so that the quantity in parentheses in
Eq. (12) is non-negative. It follows that both �N and
h�Nj�Ni will be within a small amount 	 of their bosonic
values when �Nþ1=�N � 1� 	. One can also show [6,8]
that hNj½c; cy�jNi ¼ 2ð�Nþ1=�NÞ � 1, which is within 2	
of its ideal bosonic value, 1, under the same condition. We
therefore follow Law in using the ratio �Nþ1=�N—we call
it the ‘‘�N ratio’’—as our indicator of bosonic character
[6,10].
One might wonder why we confine our attention to

quantities involving only the state jNi and nearby states,
rather than insisting that the operator c act like a bosonic
operator on the whole subspace spanned by fj0i; . . . ; jNig.
The reason is that we are interested in a state that approxi-
mates jNi, and we wish to quantify the degree to which the
system behaves like a collection of bosons when a com-
posite particle is added to or removed from this state.
Hence our focus on �Nþ1=�N as the quantifier of bosonic
character rather than �N itself. We note that because the
�N ratio is nonincreasing with N, a lower bound on
�Nþ1=�N will also be a lower bound on �N0þ1=�N0 for
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all N0 <N. However, as one can see in Ref. [8], this fact is not sufficient to guarantee that �N itself is close to unity
whenever �Nþ1=�N is.

In the remainder of the Letter we prove two inequalities relating the �N ratio to the purity.
The first is a lower bound: �Nþ1=�N � 1� NP. To show this, we consider the quantity �Nþ1 � �Nð1� NPÞ and show

that it must be non-negative.

�Nþ1 � �Nð1� NPÞ ¼ X0
�p1

�p2
. . .�pNþ1

�
�
1� N

X
�2
p

�X0
�p1

�p2
. . .�pN

¼ X0
�p1

�p2
. . .�pNþ1

�
�X0

�p1
�p2

. . .�pN

�X
�pNþ1

þ N

�X0
�p1

�p2
. . .�pN

�X
�2
pNþ1

: (13)

(Again, the prime indicates that all indices have distinct
values.) Note that the first two sums of the last line have
many terms in common, which therefore cancel out. The
only terms remaining from those sums are the terms in the
second sum for which the value of pNþ1 is equal to the
value of one of the indices pk with k ¼ 1; . . . ; N. Each of

these N possibilities yields the same result; so we can
combine those first two sums into the expression

� N
X0

�2
p1
�p2

. . .�pN
: (14)

We therefore have

�Nþ1 � �Nð1� NPÞ ¼ �N

�X0
�2
p1
�p2

. . .�pN

�X
�pNþ1

þ N

�X0
�p1

�p2
. . .�pN

�X
�2
pNþ1

: (15)

Again the two sums have many terms in common. Canceling these terms leaves

�Nþ1 � �Nð1� NPÞ ¼ NðN � 1ÞX0
�3
p1
�p2

. . .�pN
� NðN � 1ÞX0

�2
p1
�2
p2
. . .�pN

¼ NðN � 1ÞX0
�p1

�p2
. . .�pN

ð�2
p1

� �p1
�p2

Þ: (16)

Now, Eq. (16) can be rewritten as

�Nþ1��Nð1�NPÞ¼NðN�1Þ
2

X0
�p1

�p2
. . .�pN

ð�2
p1
þ�2

p2
�2�p1

�p2
Þ¼NðN�1Þ

2

X0
�p1

�p2
. . .�pN

ð�p1
��p2

Þ2�0;

(17)

thus yielding the bound

�Nþ1

�N
� 1� NP: (18)

This bound shows that a sufficiently small purity entails nearly bosonic character as quantified by �Nþ1=�N . We now
derive a bound in the other direction, showing that a nearly bosonic value of �Nþ1=�N implies a small purity. For this
purpose we start with

ð1� PÞ�N � �Nþ1 ¼
�
1�X

�2
p

�X0
�p1

�p2
. . .�pN

�X0
�p1

�p2
. . .�pNþ1

¼
�X0

�p1
�p2

. . .�pN

�X
�pNþ1

�
�X0

�p1
�p2

. . .�pN

�X
�2
pNþ1

�X0
�p1

�p2
. . .�pNþ1

: (19)

By combining sums as before (inserting the identity 1 ¼ P
�pNþ1

when needed), we get

ð1� PÞ�N � �Nþ1 ¼ ðN � 1ÞX0
�2
p1
�p2

. . .�pNþ1
þ NðN � 1ÞX0

�2
p1
�2
p2
. . .�pN

� 0: (20)

Combining this result with our earlier inequality [Eq. (18)],
we have

1� NP � �Nþ1

�N

� 1� P: (21)

We have thus put upper and lower bounds on the
�N ratio of a composite particle made of two distinguish-

able fermions, in terms of the entanglement of the pair. We
have not specified anything about the form of the wave
function of the composite particle; so the link between the
�N ratio and entanglement is established in general.
The lower bound in Eq. (21) is in fact as strong a bound

as one could hope to derive in terms of purity, in that the
bound is achievable: if there areM nonzero Schmidt modes
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and �p ¼ 1=M, then, by Eq. (17), �Nþ1=�N ¼ 1� NP as

long as N is less thanM. This lower bound is also achieved
by wave functions in the class Law considers—this class
includes double Gaussian wave functions—in the limit
NP � 1. Because Eq. (20) is never zero unless N ¼ 1
(in which case it is always zero), our upper bound is not,
for general N, achievable. Nevertheless, it is the best
possible upper bound of the form �Nþ1=�N � 1� bP,
whether or not b depends on N. This is because for any
value of b greater than one, there exists a distribution of
Schmidt coefficients that makes 1� bP negative—it suf-
fices to make one of the coefficients �k very large—
whereas �Nþ1=�N is certainly non-negative. We note
also that there can be no upper bound of the form 1�
bPr with r less than one, because such a bound would
contradict our lower bound when P is small.

We have considered in this Letter only a single wave
function �ðxA; xBÞ of the composite particle. One would
also like to investigate whether, for several orthogonal
wave functions �jðxA; xBÞ, the corresponding creation op-

erators cyj approximately satisfy the bosonic relation

½cj; cyk � ¼ 0 for j � k. (The relation ½cj; ck� ¼ 0 will au-

tomatically be satisfied because of the anticommutation of
the underlying fermionic operators.) If the relevant devia-
tion from this commutation relation similarly diminishes to
zero as the entanglement of each wave function increases,
one will then have further evidence for the proposition that
entanglement is crucial for determining whether a pair of
fermions can be treated as a boson.

Taking this idea to its logical conclusion, Law notes that
two particles can be highly entangled even if they are far
apart. Could we treat such a pair of fermions as a composite
boson? The above analysis suggests that we can do so.
However, we would have to regard the pair as a very fragile
boson in the absence of an interaction that would preserve

the pair’s entanglement in the face of external disturbances.
On this view, the role of interaction in creating a composite
boson is not fundamentally to keep the two particles close
to each other, but to keep them entangled.
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