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The dilemma of identifying the correct form for the momentum of light in a medium has run for a

century and has been informed by many distinguished contributions, both theoretical and experimental.

We show that both the Abraham and Minkowski forms of the momentum density are correct, with the

former being the kinetic momentum and the latter the canonical momentum. This identification allows us

to explain why the experiments supporting each of the rival momenta gave the results that they did. The

inclusion of dispersion and absorption provides an interesting subtlety, but does not change our

conclusion.
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In the early part of the last century Abraham and
Minkowski proposed rival forms for the momentum den-
sity of light propagating through a material medium. The
Abraham form is gAbr ¼ E�H=c2, while that due to
Minkowski is gMin ¼ D� B, so that the associated total
momenta are

p Abr ¼
Z

dV
E�H

c2
pMin ¼

Z
dVD� B: (1)

A substantial body of work in the intervening hundred
years has been devoted to attempting to determine which
of these is correct [1–3]. At the simplest level, this differ-
ence amounts to assigning to a single photon the momen-
tum pAbr ¼ p0=n or pMin ¼ p0n, where p0 ¼ @k0 is the
photon momentum in free space and n is the refractive
index of the medium. Powerful arguments have been ad-
vanced in favor of both momenta. In particular the uniform
motion of the center of mass energy, as expressed in
Newton’s first law of motion, supports the Abraham mo-
mentum [2,4]. The recoil of an absorbing or radiating atom
in a medium [5,6] and the phenomenon of diffraction [7],
however, argue with equal weight for the Minkowski mo-
mentum. Application of the Lorentz force law to the prob-
lem confirms the validity of these conclusions [8]. A
simple presentation of these arguments is given in [9].
The situation has not really been clarified by experimental
evidence, with observations reported in support of both the
Abraham [10] and the Minkowski momentum [11]. Most
recently, Campbell et al. [12] confirmed that the photon
recoil of an atom in a dielectric is indeed of the Minkowski
form, but the experiment of She et al. [13], although not
uncontroversial [14,15], presented evidence in favor of the
Abraham form. Amazingly, our resolution of the dilemma
supports all of the above cited work.

We have no wish to add to the confusion on this issue
and so begin with a brief presentation of two of the
compelling arguments in favor of the Abraham and
Minkowski momenta, one for each of them. We start by
considering a thought experiment in which a single photon

travels towards and then through a block of transparent
medium [4]. The required uniform motion of the center of
mass energy means that, as the photon is slowed by propa-
gation through the medium, the block is necessarily dis-
placed in the direction of propagation of the light. If the
photon is moving in the z direction then the displacement
of the block must be [16,17]

�z ¼ ðn� 1ÞL @!

Mc2
; (2)

whereM and L are the mass and thickness of the block and
! is the angular frequency of the photon. This displace-
ment implies a velocity and hence a momentum for the
block. Applying global momentum conservation then leads
us to infer that the momentum of the photon while it is
inside the medium is

pphot ¼ @!

cn
; (3)

in agreement with the Abraham form. We can turn this
argument around and ask what the effect might be on the
displacement of the block if we were to assign to the
photon the Minkowski momentum. As the Minkowski
momentum is greater than that of the photon in free space,
the block would then necessarily move in the opposite
direction to that of the photon. This, however, would be
at odds with Newton’s first law of motion, as generalized to
apply to mass energy. It may reasonably be argued, of
course, that it is for experiment to decide the issue, but a
result supporting the Minkowski momentum in this case
would have to contend with this conflict with the precept of
the uniform motion of an isolated system.
For our second example, we consider an atom of massm

with a transition at angular frequency !0 traveling through
a mediumwith velocity v away from a light source [6]. The
atom can absorb a photon from the source if its velocity is
such that the Doppler shift brings the light into resonance:
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: (4)

If we apply the conservation of energy and momentum to
the absorption process then we are led directly to conclude
that the momentum of the photon inside the medium is

pphot ¼ @!n

c
; (5)

which is the Minkowski form. As with our first example, it
may be argued that it is for experiment to decide the issue.
A result supporting the Abraham momentum in this case,
however, would have to account for the mismatch between
the change in the atomic momentum and that of the ab-
sorbed photon.

These arguments (and others we could have discussed)
are both simple and compelling and it is hard to see how
either could be incorrect and, indeed, neither is. We note
that in dispersive media the phase index (np ¼ ck=!) and

the group index [ng ¼ cðd!=dkÞ�1] will be different. It is

clear from the above analyses that the Abraham momen-
tum in this case will have magnitude @!=cng and that the

Minkowski momentum should have the magnitude
@!np=c.

It has been proposed that the origin of the distinction
between the Abraham and Minkowski momenta is con-
nected to the distinction in electromagnetism between the
kinetic and canonical momenta [18–20]. It will be recalled
that the kinetic momentum of a body is simply the product
of its mass and velocity. In quantum theory, the canonical
momentum of a body is simply Planck’s constant divided
by its de Broglie wavelength. It is the canonical momen-
tum, of course, that appears in the canonical commutation
relation ½x̂; p̂� ¼ i@. The canonical momentum depends on
the gauge chosen, but in the dipole form these two mo-
menta, for a point dipole, are related by [20,21]

p kin ¼ pcan þ d� B�m�E

c2
; (6)

where d andm are the electric and magnetic moments, and
E andB are the electric field and the magnetic induction at
the position of the dipole. For a collection of such dipoles
forming a medium we can add these momenta together to
give the total momentum. The electric and magnetic fields
include contributions from the surrounding dipoles but
these cancel each other by virtue of Newton’s third law
of motion [22]. We are left with the unique total momen-
tum for the medium and the field

p med
kin þ pAbr ¼ pmed

can þ pMin: (7)

We can therefore unambiguously identify the Abraham and
Minkowski momenta, respectively, with the kinetic and
canonical momenta of the light. The total momentum
(whether kinetic or canonical) is a single conserved
quantity.

There are two remaining problems in the Abraham-
Minkowski dilemma: why is it that the experiments sup-
porting one or other of these momenta give the results that
they do and how can we correctly identify the momenta in
a dispersive medium [19]? Explaining these, we suggest,
completes the resolution of the dilemma.
The kinetic momentum of a material body is simply the

product of its mass and velocity. It is this quantity that
appears in the above argument, based on uniform motion,
in support of the Abraham momentum. We identify the
momentum of the light as p0=n, or more precisely p0=ng,

for each photon by applying the conservation of (kinetic)
momentum. It is for this reason that the kinetic momentum
of the light, or the Abraham momentum, appears. It is
straightforward to confirm, by direct calculation, that the
single-photon expectation value of pAbr, as defined in
Eq. (1), is indeed p0=ng as it should be [19].

The nature of the canonical momentum is more subtle
than its kinetic counterpart. It is intimately related to the
idea of translations, indeed it is the infinitesimal generator
of such translations within, or relative to, the host medium.
We can investigate this idea using either a classical or a
quantum theory but for definiteness, and appropriateness to
the discussion of a single photon, choose the quantum
description. In the Coulomb gauge the vector potential
operator and the displacement operator satisfy the equal-
time canonical commutation relation

½ÂjðrÞ; D̂kðr0Þ� ¼ �i@�?
jkðr� r0Þ; (8)

where �?
jkðr� r0Þ is the transverse delta function [23]. We

note that this commutation relation holds for dielectric
media even if we include both dispersion and losses [24].
It is straightforward to use this to show that it is the
Minkowski momentum that generates a translation of the
vector potential:

exp

�
�i

a � p̂Min

@

�
ÂðrÞ exp

�
i
a � p̂Min

@

�
¼ Âðrþ aÞ; (9)

where a is a constant vector. It follows that the Minkowski
momentum is the canonical momentum. For a body im-
mersed in a medium it is precisely this translation, relative
to the medium that is important. It is for this reason that the
Minkowski momentum appears in experiments that mea-
sure the displacement of a body embedded in a host
[11,12]. The canonical momentum is also intimately re-
lated to the wavelength of the light in that a translation
induces a phase shift proportional to the ratio of the posi-
tion shift and the wavelength. This intimate connection is
the reason that it is the canonical, or Minkowski, momen-
tum that appears in the analysis of diffraction [7].
There is a remaining problem, which is that the single-

photon expectation value of p̂Min is not nphp̂0i, but rather
n2php̂0i=ng [19]. We can see this directly by noting that the
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single-photon expectation value of p̂Abr is hp̂0i=ng and that
hp̂Mini ¼ "�hp̂Abri ¼ n2php̂Abri. This has led to the sugges-
tion that there is a difference between the canonical mo-
mentum, which takes the value nphp̂0i, and the Minkowski

momentum, which seems to take the value n2php̂0i=ng
[5,19]. In fact this is not the case and the Minkowski
momentum is indeed p̂0np. The explanation for this lies

in the quite distinct roles of the kinetic and canonical
momenta. The kinetic or Abraham momentum is the ki-
netic momentum carried by the photon and it is mean-
ingful, therefore, to calculate it by taking the single-photon
expectation value of p̂Abr. The canonical momentum, how-
ever, is associated with spatial translations and its defining
property, therefore, is the translation in Eq. (9) or, equiva-
lently, the commutation relation [25]

½p̂j
Min; Â

kðrÞ� ¼ i@
@

@xj
ÂkðrÞ: (10)

For a field excitation at angular frequency !, this deriva-

tive results in multiplying the vector potential by @kj ¼
npp

j
0, which is the canonical or Minkowski momentum.

We can and should ask why the single-photon expecta-
tion value of p̂Min is not the canonical momentum. The
answer to this question lies in the fact that electromagnetic
quanta in the medium are polaritons (or similar species),
that is excitations of the coupled optical and polarization
(or magnetization) fields [26]. Each polariton mode con-
tributes to the commutation relation, Eq. (8), its own value
of np=ng. The total for each value of k, however, is [24,27]

X
i

npð!iÞ
ngð!iÞ ¼

X
i

k

!i

d!i

dk
¼ 1; (11)

where !i are the solutions of the dispersion relation
!ðkÞ ¼ ck=npð!Þ. An elementary example with just two

polariton branches is depicted in Fig. 1. The commutation
relations (10) and then the translation formula, Eq. (9),

are consequences of the canonical commutation relation,
Eq. (8), and therefore, of the sum rule in Eq. (11). Had we
included only one of the polariton branches in our vector
potential and displacement fields, then the commutator in
Eq. (10) would be replaced by one in which each frequency

component of Â would be multiplied by np=ng at that

frequency. This, when combined with the derivative, would
give an effective momentum with the value n2pp̂0=ng. The

identification of this value with the Minkowski momentum
is a result of making a narrow bandwidth approximation
and thereby omitting all but one of the polariton branches.
We might also ask whether by working with a suitably
narrow bandwidth we might encounter a regime in which
the canonical momentum is n2pp̂0=ng. Our analysis sug-

gests that this is not the case. The translation of the fields,
as embodied in Eq. (9), is a property of the commutation
relations and is not dependent on any specific field state.
We must conclude that the presence of all of the polariton
modes, even if not excited, plays its part in the translation.
The narrow bandwidth approximation is often useful, but
retaining the modes corresponding to all frequencies is
necessary if we are to retain the correct commutation
properties.
Our resolution of the Abraham-Minkowski dilemma

requires us to recognize that there are two distinct electro-
magnetic momenta, the kinetic momentum and the canoni-
cal momentum. The total momentum of matter plus light is
unique, but the division of this into optical and material
parts may be performed so as to separate kinetic or canoni-
cal parts. The Abraham and Minkowski momenta are,
respectively, the kinetic and canonical optical momenta.
We conclude by noting that a number of further mo-

menta have been proposed, with the aim of resolving the
Abraham-Minkowski dilemma [2]. By demonstrating the
need for two ‘‘correct’’ momenta and associating these,
unambiguously, with the Abraham and Minkowski forms,
we may hope that we have also removed the need for
further rival forms.
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