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We use a mesoscopic simulation technique to study the effect of short-ranged interparticle attractions

on the steady-state sedimentation of colloidal suspensions. Attractions increase the average sedimentation

velocity vs compared to the pure hard-sphere case, and for strong enough attractions, a nonmonotonic

dependence on the packing fraction� with a maximum velocity at intermediate� is observed. Attractions

also strongly enhance hydrodynamic velocity fluctuations, which show a pronounced maximum size as a

function of �. These phenomena arise from a complex interplay between nonequilibrium hydrodynamic

effects and the thermodynamics of transient cluster formation.
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Many industrial applications of colloidal suspensions
depend critically on their behavior under nonequilibrium
conditions. Such properties are, however, notoriously hard
to calculate because of long-ranged solvent induced hydro-
dynamic interactions (HI) [1]. Partially for this reason, the
vast majority of theoretical and computational treatments
of the nonequilibrium regime have focused on hard-sphere
(HS) particles. Thus our understanding of how attractive
interparticle interactions affect the nonequilibrium behav-
ior of colloidal suspensions is still in its infancy. This state
of affairs stands in marked contrast to the equilibrium
regime, where methods to calculate how interactions con-
trol phase behavior and interfacial properties are already
well developed [2].

To address this fundamental question, we study the
effect of attractive interactions on a classic problem of
nonequilibrium physics, namely, the steady-state sedimen-
tation of spherical particles through a viscous solvent at
low Reynolds number [1,3]. Besides its intrinsic interest
for statistical mechanics, sedimentation is also important
for understanding industrial applications such as paints,
coatings, ceramics, food, and cosmetics [1].

Studies of sedimenting HS systems have shown that HI
produce many rich and subtle effects [1,3]. Even just three
sedimenting particles can exhibit chaotic behavior [4]. HI
strongly influence the average sedimentation velocity vs,
which rapidly decreases with increasing packing fraction
� [5]. Scaling arguments suggest that velocity fluctuations
around the average �v ¼ v� vs are even more strongly
affected by HI, and that they could diverge with container
size L as hð�vÞ2i � L [6]. This surprising prediction stimu-
lated a large amount of research on these intrinsically
chaotic hydrodynamic velocity correlations (swirls).
Experiments show that the swirls do grow with container
size for smaller L (the unscreened regime) and then satu-
rate for larger containers (the screened regime) [7], but the
nature and origins of the screening are still a source of

controversy [3,8–11]. Here we explore how these subtle
hydrodynamic phenomena change when a new thermody-
namic component, in the form of interparticle attractions,
is added to the mix. We find a rich interplay between the
thermodynamics of cluster formation and nonequilibrium
hydrodynamics.
In a seminal paper, Batchelor calculated the effect of

interparticle attractions beyond the HS model on the aver-
age sedimentation velocity in the dilute limit [12]; for
short-ranged potentials this gives [1]:

vs=v
0
s � 1� ½6:55� 3:52ð1� B�

2Þ��þOð�2Þ; (1)

where v0
s is the sedimentation velocity of a single colloid,

B�
2 � B2=B

HS
2 , B2 is the second virial coefficient, and BHS

2

is the virial coefficient calculated with the effective HS
radius of the colloids. Equation (1) suggests that attractions
should increase the sedimentation velocity, while added
repulsions should decrease it compared to the pure HS
case. Experiments on dilute suspensions with intercolloid
attractions [13,14] or long-ranged electrostatic repulsions
[15] are consistent with this picture. However, these theo-
ries and experiments are only relevant in the dilute limit.
What happens to the average sedimentation velocity at
larger volume fractions is not well understood, and virtu-
ally nothing is known about the effect of attractions on
velocity fluctuations.
We address these questions by applying a mesoscopic

simulation technique based on stochastic rotation dynam-
ics (SRD) [16,17], that can successfully reproduce hydro-
dynamic fluctuations in steady-state sedimentation [18]
and has recently been shown to quantitatively describe
colloidal sedimentation experiments, including complex
nonlinear effects such as Rayleigh Taylor instabilities
[19]. The accuracy with which SRD was shown to repro-
duce colloidal experiments gives us confidence in the
predictions of our simulations with interparticle attrac-
tions. We are able to go beyond the dilute regime and
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find that, for short-ranged attractive potentials, Eq. (1) is
accurate up to about � � 0:05, but breaks down for higher
packing fractions. We measure, for the first time, the effect
of attractions on velocity fluctuations in the unscreened
regime, and find that the range of the hydrodynamic swirls
is greatly increased by attractions, with a maximum around
� � 0:07 for stronger attractions. We link the increase in
both average sedimentation velocity and in the size of the
hydrodynamic swirls to a complex interplay between the
aggregation, fragmentation, and sedimentation of transient
clusters.

In our simulations, the colloid-colloid interaction was
modeled by a classic DLVO [1] potential: VccðrÞ ¼
VHSðrÞ þ VvdWðrÞ þ VDH. The first term is a repulsive HS
like contribution:�VHSðrÞ ¼ 10½ð�=rÞ2n � ð�=rÞn þ 1=4�
for r � 21=n� and 0 for r > 21=n�, where n ¼ 24 and � ¼
�cc, the colloidal HS radius. The second and third terms are
the short-range van der Waals attraction and the repulsive
Debye-Hückel-like contribution respectively [1]; their ex-
act forms are taken from Ref. [20]; we include, as they do,
a cutoff distance (Stern layer) given by � ¼ 0:048�cc to
overcome the van der Waals singularity. Keeping the
Debye screening length fixed at � ¼ 8:96=�cc, we varied
the Hamaker constant and particle charge to obtain four
different potentials with an attractive minimum at short
interparticle distance. The normalized second virial coef-
ficients were B�

2 ¼ �0:063,�0:507,�1:044, and�1:416,
respectively. Note that all these values are above B�

2 ¼
�1:5 to avoid fluid-fluid phase separation [21].

Brownian fluctuations and HI are induced by SRD fluid
particles that interact with each other through an efficient
coarse-grained collision step that conserves mass, energy,
and momentum, so that the Navier-Stokes equations are
recovered at the macroscopic level [16]; note that in the
literature this method is also called multiple particle colli-
sion dynamics and has been widely applied to soft-matter
simulations [22]. The colloids couple to the SRD fluid
through an interaction of the form �VcfðrÞ ¼
10½ð�=rÞ2n � ð�=rÞn þ 1=4� for r � 21=n� and 0 for r >

21=n�, where n ¼ 6 and � ¼ �cf ¼ 0:465�cc. The equa-
tions of motion are updated with a standard molecular
dynamics algorithm for the colloid-colloid and the
colloid-fluid interactions, and with a coarse-grained SRD
collision step for the fluid-fluid interactions. The colloid-
fluid diameter �cf is lightly smaller than 0:5�cc to avoid
spurious depletion forces between the colloids [17,18].
This mesoscopic simulation technique has been shown to
reproduce the correct low Reynolds (Re) hydrodynamic
flow behavior with an effective hydrodynamic radius of
a � 0:8�cf , as well as the correct thermal Brownian fluc-
tuations and diffusion for colloidal suspensions. See
Refs. [17,18] for further technical details and a justification
of our SRD parameter choice.

The simulations were performed by placingNc ¼ 8–819
colloids in a box of sizes Lx ¼ Ly ¼ 16�cf and Lz ¼

48�cf with periodic boundary conditions. The number of
solvent particles was N ¼ 40Vfree=�

3
cf � 4� 5� 105,

where Vfree is the free volume left by the colloids. A
gravitational external field g is applied to the colloids in
the z direction in order to induce sedimentation. After an
initial transient time, the system reaches steady-state con-
ditions, where the average sedimentation velocity vs is
constant, the one-body particle spatial distribution is ho-
mogeneous, and no drift is observed.
The simulation box sizes are small enough that we are

still in the unscreened regime [18]; larger simulations and
possibly different boundary conditions [9,10] are necessary
in order to observe screening. The particle Re number
Re ¼ vsa=�, where � is the kinematic viscosity, was
kept at Re � 0:08, which is small enough for the system
to be in the correct low Re number Stokesian regime.
Similarly, the Péclet number Pe ¼ v0

sa=Dc, with Dc the
equilibrium colloid self-diffusion coefficient, was Pe ¼
2:5, so that thermal Brownian noise is nonnegligible.
We begin our study with the effect of the interparticle

attractions on the average sedimentation velocity. Figure 1
shows vs for various attractions and for different packing
fractions � ¼ 4

3��a
3, where � is the colloid number

density. Note that for these hydrodynamic effects, the
correct radius to use is the hydrodynamic one. In the dilute
limit, the simulation results are well described by
Batchelor’s prediction (1) with no free parameters. For
B�
2 >�0:86 the slope at low � is negative, but for B�

2 <�0:86 the attractions become strong enough to overcome
the backflow-induced velocity reduction and give rise to a
positive slope. These results suggest that, at least for short-
ranged attractions, the exact potential details are unimpor-
tant and vs=v

0
s is controlled by B2.

At larger packing fractions the Batchelor prediction (1)
breaks down. Interestingly, for more attractive systems
(B�

2 <�0:86) there is a clear maximum in vs vs � that
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FIG. 1 (color online). Average sedimentation velocity vs as a
function of the volume fraction � ¼ 4

3��a
3 for four different

interparticle attractions and for hard spheres. The dashed lines
are Batchelor’s predictions (1) for the dilute limit. The dotted
line is a prediction known to be accurate for hard spheres [23].
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becomes more pronounced for stronger attractions. To our
knowledge, such a nonmonotonic dependence on� has not
been observed before in simulations.

Next we investigate how attractions affect the velocity
fluctuations of the particles around the average, �v ¼ v�
vs. Here we focus on spatial correlations in the z direction,
defined as Czð ~rÞ ¼ h�vzð0Þ�vzð ~rÞi=h�vzð0Þ2i; where h. . .i
is the average over time and over all colloids. The distance
vector ~r can be parallel to the sedimentation, CzðzÞ, or
perpendicular to it, CzðxÞ. The correlation function CzðzÞ
exhibits an exponential decay CzðzÞ ¼ expð�z=	kÞ, where
	k is the correlation length in the direction parallel to the

sedimentation. It provides a measure of the hydrodynamic
swirl size. CzðxÞ decays as well, but also shows an anti-
correlation region where the swirl moves in the opposite
direction. The qualitative shape and decay of the swirls is
similar to that seen in experiments [7] and simulations [18]
for HS particles. However, as can be seen in Fig. 2, the
correlation length 	k is greatly enhanced by the attractions.
Whereas for weaker attractions 	k decreases with �, simi-

lar to what is observed for HS particles [7,18], for more
strongly attractive systems the correlation length first in-
creases with � and then decreases, giving rise to a maxi-
mum around � � 0:07 for B�

2 <�1. A similar non-
monotonic behavior with � is observed for CzðxÞ (not
shown).

To explain the effect of the interactions on the sedimen-
tation, we first note that although the attractions in our
system are not strong enough to form permanent clusters,
they do enhance the probability for particles to cluster
together in a transient fashion. This effect can be clearly
seen in Fig. 3 where we plot the probability distribution of
transient clusters PðiÞ and their average lifetime 
ðiÞ as a
function of the cluster size, i. In order to distinguish
whether a pair of particles belong to the same cluster or
not, a cutoff distance rcut ¼ 1:06�cc was used, which is a
reasonable estimate of the range of the attractive potential

well. We checked that our results do not qualitatively
depend on the exact cutoff distance rcut. As the attraction
strength increases, both the probability of finding clusters
[Pði > 1Þ] and the average cluster lifetime 
ðiÞ increases.
The gravitational force on a cluster increases linearly with
the number of particles inside the cluster, but the friction
increases roughly linearly with the radius of gyration of the
cluster. Since the latter typically increases less quickly than
the former, larger clusters sediment faster than smaller
ones, an effect we observe by tracking the clusters in
time. Furthermore, we find that stronger interactions lead
to slightly more compact clusters, with a smaller radius of
gyration and so even larger sedimentation velocities.
Taken together, these cluster effects help explain why

at a fixed �, increasing the strength of the attractions
increases the average sedimentation velocity vs. Further-
more, faster clusters with a longer lifetime are able to move
along larger distances with a roughly constant velocity.
This leads to the propagation of the correlations along
larger distances and so, to an increase of 	k.
To examine the effect of changing�, we show, in Fig. 4,

how the cluster distribution changes when varying � at a
fixed attraction. The curves show the same qualitative
behavior for all the B2: as � increases, the particles are
on average closer to one another, and so the probability of
being in a cluster grows. When the gaps between particles
are large (low �), the enhanced transient cluster formation
at strong attractions leads to an increase in vs and 	k. On
the other hand, if the gap between nearest neighbors is
much less than the particle radius, then the fluid flow must
be squeezed through the interparticle voids, leading to a
decrease of vs with � that resembles that of pure HS
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FIG. 2 (color online). Correlation length 	k parallel to the
sedimentation direction for velocity swirls, as a function of
packing fraction � for different interparticle attractions and
for pure HS. Attractions strongly enhance the size of the velocity
swirls.
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FIG. 3 (color online). (a) The probability of finding a transient
cluster of size i and (b) the average cluster lifetime (normalized
by the Brownian time 
B ¼ a2=Dc as a function of i for hard
spheres and for four different interparticle attractions. The
particle volume fraction is � ¼ 0:0233.
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systems. We estimate that a maximum in vs=v0 will occur
when the typical gap width is about one radius; i.e., the
average interparticle distance between particle centers is
d ¼ 3a. Assuming that the average interparticle distance is

given by d� a��1=3, this corresponds to a volume frac-
tion � ¼ ða=dÞ3 � 0:04, which agrees qualitatively with
the � � 0:05 we find.

Calculating velocity fluctuations is notoriously subtle
[3,6–11,18]. Nevertheless, the cluster picture can shed
some light. From Fig. 4(b) we see that the clusters have a
shorter lifetime for larger �, presumably because the col-
lision rate with other particles increases. This decreases 	k.
In addition, the fluctuations tend to track vs, so when this
decreases, they also decrease. At low � and stronger
attractions, the enhanced transient cluster formation wins
out, but at higher � the shorter cluster lifetimes and
backflow-induced reduction of vs dominate. The competi-
tion between these effects helps to qualitatively explain the
nonmonotonic behavior of 	k with �.

Finally, this study also raises a number of further ques-
tions. First, it would be interesting to see what happens for
larger Pe numbers. Preliminary simulations up to Pe ¼ 15
show that larger clusters are slightly less likely to occur at
higher Pe numbers, most likely because the enhanced shear
forces break them up, leading to slightly lower sedimenta-
tion velocity ratios vs=v0.

Second, it would be very interesting to study larger box
sizes, to see whether attractions alter the crossover from the
screened to the unscreened regime. Third, for even stronger
attractions (B�

2 <�1:5) permanent clusters should begin to
form. These will then sediment more quickly than mono-

mers. But as they grow and accelerate, at some point the
shear forces should break them up again. Such a rich
interplay between aggregation and hydrodynamics should
lead to new steady states with a cluster population that
depends on the attraction strength. New simulations are
planned to address these questions that not only have many
practical applications for colloids, but also demonstrate the
rich complexity of combining thermodynamics with non-
equilibrium physics.
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FIG. 4 (color online). The plots show (a) the probability of
finding a transient cluster of size i and (b) the average cluster
lifetime (normalized by the Brownian time 
B) as a function of i
for three different particle volume fractions, �. The normalized
second virial coefficient is B�

2 ¼ �0:507.
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