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One of the major challenges in realizing antiferromagnetic and superfluid phases in optical lattices is

the ability to cool fermions. We determine constraints on the entropy for observing these phases in two-

dimensional Hubbard models using determinantal quantum Monte Carlo simulations. We find that an

entropy per particle ’ ln2 is sufficient to observe the insulating gap in the repulsive Hubbard model at

half-filling, or the pairing pseudogap in the attractive case. Observing antiferromagnetic correlations or

superfluidity in 2D systems requires a further reduction in entropy by a factor of 3 or more. In contrast

with higher dimensions, we find that adiabatic cooling is not useful to achieve the required low

temperatures. We also show that double-occupancy measurements are useful for thermometry for

temperatures greater than the nearest-neighbor hopping energy.
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An exciting new development in cold atoms is the ability
to realize in the laboratory simple models of strongly
correlated fermions in optical lattices [1–7]. These studies
are motivated by their relevance to spectacular phenomena
in condensed matter physics, like high Tc superconductiv-
ity, that are not fully understood. The best known model is
the fermion Hubbard Hamiltonian [8,9] that captures the
physics of antiferromagnetism and, at least qualitatively,
d-wave superconductivity in two dimensions (2D). The
Hubbard model is well understood in one dimension
(1D), using exact solutions and bosonization [10], and
also in the limit of large dimensions, using dynamical
mean field theory (DMFT) [11]. The two-dimensional
problem, of direct relevance to layered high Tc supercon-
ductors, is the least well understood theoretically. New
insights into the 2D Fermi Hubbard model can come
from cold atom emulators, given their high degree of
tunability (interaction, chemical potential) and absence of
disorder and material complications.

In cold atom experiments it is the entropy, rather than
temperature, that is directly controlled and measured.
However, much of our intuition about Hubbard models is
as a function of T. Hence it is important to gain insight into
various physical phenomena, such as formation of mo-
ments or pairs and their ordering, as functions of the
entropy and interaction parameters. In this Letter we ad-
dress these questions for 2D Hubbard models using deter-
minantal quantum Monte Carlo (QMC) simulation [8], an
unbiased, nonperturbative method which gives exact re-
sults (within controlled error bars) on finite lattices.

We investigate two systems, (a) the 2D repulsive (U >
0) Hubbard model at half-filling and (b) the 2D attractive
(U < 0) Hubbard model at any filling, for the following
reasons. First, determinantal QMC simulation is free of the
fermion ‘‘sign problem’’ [12] in both cases. Second, these

systems exhibit phenomena of fundamental interest: strong
antiferromagnetic correlations andMott physics forU > 0,
and a Berezinskii-Kosterlitz-Thouless (BKT) transition to
an s-wave superfluid [13] with a pairing pseudogap [14]
above Tc for U < 0. Finally, both models are realizable in
optical lattice experiments, where a Feshbach resonance
can be used to change the sign of the interaction.
Our main result is the determination of the characteristic

entropy scales as functions of the interaction. These scales
correspond to the opening of the insulating gap and to
development of significant spin correlations in the U > 0
case, and to the pairing pseudogap crossover at T� and the
superfluid phase transition at Tc for U < 0. We find that, in
the (U=t, s) phase diagram, the characteristic scales satu-
rate to constant values of s, the entropy per particle, in the
strong coupling jUj=t � 1 limit, which is qualitatively
different from their more familiar behavior in the (U=t,
T=t) phase diagram. We present a scaling argument to
understand why the ‘‘critical entropy’’ at the phase tran-
sition saturates, in marked contrast to Tc which decreases
in strong coupling. This implies that once the entropy per
particle is lowered to a certain value, s ¼ S=NkB ’ 0:1,
then one can access the broken symmetry phase for arbi-
trarily large interaction strengths.
In addition, our results on the T dependence of the

double occupancy shed light on two distinct questions.
We point out the difficulty of using adiabatic cooling in
2D, and determine the regime in which double occupancy
can be used for thermometry.

The Hubbard Hamiltonian is H ¼ �t
P

ði;jÞ;�ðcyi�cj� þ
cyj�ci�Þ þU

P
iðni" � 1

2Þðni# � 1
2Þ ��

P
ini. Here i labels a

site, or well, of a 2D square optical lattice, with unit lattice
spacing a ¼ 1, and � ¼" , # corresponds to two hyperfine
states of the atom. The hopping t sets the scale for the
kinetic energy andU is the on site interaction energy. ci� is
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the fermion destruction operator at site i with spin �, and

densities ni� ¼ cyi�ci� and ni ¼ P
�ni�. We need to tune

the chemical potential � to obtain the desired density � ¼P
ihnii=N on an N-site lattice. The hopping t, determined

by the overlap of single-particle wave functions localized
on near-neighbor sites, leads to the kinetic energy �ðkÞ ¼
�2tðcoskxaþ coskyaÞ. The parameters t and U can be

directly related [6,15] to the lattice depth V0, tuned by
the laser intensity, and to the interatomic interaction tuned
by a Feshbach resonance. The Hubbard model is valid in
the regime where only a single band is populated in the
optical lattice.

We first describe the results for the repulsive (U > 0)
model at half-filling � ¼ 1. We then turn to the attractive
(U < 0) case at arbitrary filling � � 1. Taken together, this
permits us to discuss the parallels between these two
systems and extract some general lessons about 2D lattice
fermions.

Repulsive Hubbard model at half-filling.—Our calcula-
tions are done at fixed T; thus we begin with the phase
diagram in the (U=t, T=t) plane shown in Fig. 1(a). From
this we determine the (U=t, s) phase diagram in Fig. 1(b) as
explained below. Note that, for the U > 0 model at � ¼ 1,
there are no finite temperature phase transitions in 2D. The
ground state has long range antiferromagnetic (AFM) or-
der, but, in the thermodynamic limit, this order is destroyed
by thermal fluctuations [16] at all T > 0 (in contrast to the
3D case). We, nevertheless, see two important crossover
scales, denoted by filled symbols in Fig. 1(a). The high T
crossover corresponds to the opening of the insulating gap,
and the low T crossover is due to the growth of AFM order,
so that the system appears ordered on finite lattices. As
described next, both these crossovers have characteristic
signatures in physical observables.

(i) Insulating gap: At sufficiently high temperatures, the
effect of interactions can be ignored. As we lower the

temperature, interactions lead to the opening of an insulat-
ing gap in the spectrum of fermionic excitations at half-
filling. This results in a characteristic feature in the com-
pressibility: d�=d� is very small (vanishing at T ¼ 0) for
j�j< �ch, which is called the ‘‘charge gap’’. The U=t
dependence of the gap �ch, obtained from QMC data on
the compressibility [15], is shown in Fig. 1(a).
The crossover at T � �ch separates the regime of effec-

tively gapless behavior for T � �ch, from the presence of
an insulating gap for T � �ch. For large U, �ch scales
linearly with U and is called the Mott gap, but it becomes
(exponentially) small for low U. The qualitative behavior
of �ch as a function of U=t is correctly described by a
simple mean field theory (MFT), but surprisingly the QMC
value of�ch is much smaller [15] than MFT (by as much as
a factor of 4 at U=t ¼ 8).
We note that the evolution [17] from a weak coupling

spin-density wave insulator to a strong coupling
Heisenberg-Mott insulator in the U > 0 Hubbard model
at � ¼ 1 is the analog of the BCS to Bose-Einstein con-
densation (BEC) crossover in attractive Fermi systems.
(ii) Spin correlations: For moderate to large U, once the

insulating gap is well developed, the double occupancy
D ¼ hni"ni#i is strongly suppressed, as shown in Fig. 1(c),

and there are well-defined ‘‘spins’’ or ‘‘local moments’’
formed on each of the lattice sites. At even lower tempera-
tures the moments begin to order, with a correlation length
that grows rapidly with decreasing T. We have examined
the growth of spin correlations using a variety of observ-
ables as functions of T and U=t. These include [15] the
magnetic susceptibility �ðTÞ, spin-spin correlation func-
tion hSi � Siþ�i, and its Fourier transform, the structure
factor SðqÞ.
We plot in Fig. 1(a) the U=t dependence of the charac-

teristic scale Tspin for spin correlations. We determine [15]

Tspin by looking at the maximum in the magnetic suscep-

FIG. 1 (color online). (a) Phase diagram of the repulsive (U > 0) 2D Hubbard Model at half-filling in the (U=t, T=t) plane obtained
from QMC simulations on N ¼ 102 lattices. Two important crossover scales are denoted by filled symbols: the insulating gap �ch

(obtained from the compressibility) and Tspin (obtained from the peak in the uniform magnetic susceptibility). We also show curves of

constant entropy per particle s ¼ S=NkB. (b) Phase diagram in the (s, U=t) plane showing the two crossover scales. In the regime I, the
system is effectively gapless; in regime II, the insulating gap develops and local moments form; and in regime III, the spins get
correlated over ever increasing distances. (c) Temperature dependence of the double-occupancy DðTÞ for various U=t. Dynamical
mean field theory (DMFT) [20] shows a much more pronounced anomalous region with dD=dT < 0 compared to our QMC results.
The inset shows that D is insensitive to linear system size L.
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tibility �ðTÞ. Except in weak couplingU=t � 1, where the
charge and spin scales are essentially identical, we find in
Fig. 1(a) that the two scales are quite different forU=t > 1.
In the large U (Mott) limit we expect �ch �U � Tspin ’
JAF ¼ 4t2=U, although the 1=U dependence is not yet
observed at U=t ¼ 8 in the QMC data of Fig. 1(a). We
note that Tspin would set the maximum scale for TN�eel if we

were to couple 2D layers to stabilize AFM order in a
layered system like the parent insulators of the high Tc

superconductors.
(iii) Entropy: We now wish to represent all of the in-

sights gained above in the (U=t, s) plane, since the entropy
density s can be monitored more easily than the tempera-
ture in cold atom experiments. We calculate SðTÞ from
QMC calculations in two different ways [18,19] which
agree to within a few percent [15], and plot curves of
constant entropy density s ¼ S=NkB in the (U=t, T=t)
phase diagram of Fig. 1(a). We can thus obtain the (U=t,
s) phase diagram of Fig. 1(b), where the characteristic
crossovers are represented as the entropy as a function of
U=t at the insulating gap scale �ch and the spin scale Tspin.

At weak coupling, both scales are exponentially small
and the system looks like a highly degenerate normal
Fermi gas with a low entropy. It is only for very low s �
ln4 ’ 1:386 that one observes either the insulating gap or
buildup of spin correlations for U=t � 1. For larger cou-
pling U=t 	 5 we see that the entropy at the gap scale is
approximately s ¼ ln2 ’ 0:693. By lowering the entropy
to s� 0:4 it is already possible to cross Tspin.

We also note that both the characteristic curves in the
(U=t, s) plane saturate to constant values of s in theU=t �
1 limit. This is in marked contrast to the more familiar
(U=t, T=t) phase diagram, where �ch grows linearly in U
and Tspin is expected to decrease with J ¼ 4t2=U in strong

coupling. We can understand this from a scaling argument
for s, analogous to the one we present in detail below for
the attractive Hubbard model.

(iv) Cooling and thermometry: We next turn to a beau-
tiful suggestion [20] for adiabatic cooling, that exploits the

anomalous T dependence of the double occupancy D ¼
hni"ni#i observed in dynamical mean field theory. The idea

is as follows. The entropy and D are related to the free
energy F via S ¼ �@F=@T and D ¼ @F=@U, so that
@S=@U ¼ �@D=@T. ForU > 0, the ‘‘natural’’ expectation
is dD=dT > 0 since raising T gives more thermal energy to
overcome the on site repulsionU. Thus T increases along a
constant S curve upon increasing U=t. The DMFT obser-
vation of an anomalous region with dD=dT < 0, beginning
at very weak coupling and extending up to U=t ¼ 12,
implies that we can follow a curve of constant S and cool
the system as the lattice is turned on, i.e., as U=t is
increased.
We show in Fig. 1(c) the DMFT curve [20] for DðTÞ at

U ¼ 6t contrasted with 2D QMC results. The absence of
an anomalous regime with dD=dT < 0 in 2D is likely a
result of short range spin correlations that are important in
low dimensional systems but neglected in DMFT. We see
that the constant-s curves in Fig. 1(a) do not show a
significant negative slope and thus one cannot obtain adia-
batic cooling in 2D.
From Fig. 1(c) we see that the double-occupancyDðTÞ is

quite weakly T dependent for T < t, but its monotonic T
dependence at higher temperature suggests that DðTÞ,
which can be measured in cold atom experiments [3],
can be used for thermometry in the range 1< T=t < 10.
Such a thermometer would need QMC results for DðTÞ
calibration. We show in the insert to Fig. 1(c) that the
double occupancy, that is a local observable, has no sig-
nificant system size dependence and can indeed be very
accurately determined by QMC simulations.
Attractive Hubbard model at arbitrary filling.—QMC

simulations of the attractive Hubbard model are free of
the fermion sign problem [12] for arbitrary values of the
filling �. Moreover, this model shows superfluidity of
s-wave pairs [13] and a BCS to BEC crossover [14] as a
function of jUj=t. We will work away from half-filling
where the ground state is a superfluid of s-wave pairs;
for concreteness we present results at � ¼ 0:7.

FIG. 2 (color online). (a) Phase diagram of the attractive (U < 0) 2D Hubbard Model at � ¼ 0:7 (away from half-filling) obtained on
N 	 102 lattices. We show the crossover scale T� corresponding to the pairing pseudogap (obtained from the susceptibility) and the
critical temperature Tc [estimated from the superfluid density �sðTÞ]. We also show curves of constant entropy per site s ¼ S=NkB,
Inset: jUj-dependence of the superfluid Tc. (b) Phase diagram in the (jUj=t, s) plane showing the three regions: normal, pseudogap, and
superfluid. (c) Temperature dependence of the double-occupancy DðTÞ for various jUj=t.
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(i) Pairing pseudogap: The ‘‘pseudogap’’ or pairing
scale T� below which pairs form [14] in the attractive
Hubbard model, is the analog of the gap scale below which
moments form in the repulsive model. Since pairing rep-
resents the onset of singlet correlations, we can easily
determine [15] T� from the susceptibility �ðTÞ, which is
strongly suppressed for T � T�. The pairing T� is plotted
as a function of jUj=t in Fig. 2(a). T� has essentially the
same jUj dependence as the T ¼ 0 pairing gap: exponen-
tially small in jUj=t for the weak coupling BCS limit and
proportional to U in the strong coupling Bose limit. For
T < T� there is a pseudogap [14] due to pairing correla-
tions above Tc, that leads to the suppression of low-energy
spectral weight in the density of states.

(ii) Berezinskii-Kosterlitz-Thouless (BKT) transition:
At lower temperature there is a transition to a superfluid
phase in the attractive Hubbard model (for � � 1). In 2D
this is a BKT transition, with algebraic order in the pair-
pair correlation function [13] below Tc and a nonzero
superfluid density �s.

We determine [15] the BKT Tc from the jump in the
superfluid density �s. While Tc is exponentially small in
the weak coupling BCS limit, it goes as Tc � t2=jUj at
strong coupling, for a BEC of hard-core bosons with hop-
ping energy t2=jUj. The nonmonotonic jUj=t dependence
of Tc shown in the inset to Fig. 2(a), though expected on
general grounds, has never been computed before.

(iii) Entropy: We calculate the entropy [15] and plot
curves of constant s in the (jUj=t, T=t) plane in Fig. 2(a).
From this, we obtain the (jUj=t, s)-phase diagram of
Fig. 2(b). We see that for jUj=t 	 5 one needs to lower
the entropy s & 0:8 to enter the pseudogap regime below
T�. To observe superfluidity below the BKT transition
requires s & 0:1.

We note that, while T� � jUj ! 1 and Tc � t2=jUj !
0 for jUj=t � 1, the corresponding s values in Fig. 2(b)
saturate at large jUj. This striking difference between the
strong coupling behavior of the characteristic crossovers
and phase transitions in (U=t, T=t) and (U=t, s) phase
diagrams is common to both the attractive and repulsive
Hubbard models.

We now give a scaling argument to understand this
qualitative difference. We exploit the fact that the entropy
density s ¼ S=NkB is a dimensionless, intensive, bounded
function of jUj, t, T, for a given �. To understand the
pairing crossover in the (jUj=t, s) plane, we note that in
the jUj=t � 1 limit, sðT�Þ ¼ F ðT�=jUj; t=jUjÞ !
F ðconst; 0Þ, which depends only on � and is bounded
above by ln 4. To estimate s at the phase transition we
must use the degeneracy scale, which goes like t2=jUj in
the jUj=t � 1 limit. Then sðTcÞ must be of the form
sðTcÞ ¼ GðTc=ðt2=jUjÞÞ, which goes to a constant for
jUj=t � 1. Why does the same reasoning not lead to
the patently false answer that the characteristic scale
goes to a constant in the opposite jUj=t � 1 limit? The
reason is that, in the limit of small jUj, the degeneracy

scale is t and we thus find sðTcÞ � Tc=t ! 0, consistent
with Fig. 2(b).
(iv) Cooling and thermometry: The double-occupancy

DðTÞ for U < 0 in Fig. 2(c) shows a rather small regime of
anomalous behavior, which now corresponds to dD=dT >
0. Thus the prospects of using adiabatic cooling [20] in 2D
do not look promising for the attractive case either.
However, Fig. 2(c) does suggest that DðTÞ can be used as
an effective thermometer for the range t < T < 10t.
Conclusions.—Current fermion optical lattice experi-

ments [4] have achieved an entropy per particle ’ ln2,
sufficient to observe the insulating gap in the repulsive
Hubbard model or the pairing pseudogap in the attractive
case. Observing antiferromagnetic correlations or super-
fluidity in 2D systems will require a further reduction in the
entropy by a factor of 3 or more. It is possible that the
inhomogeneous density in a trap can lead to a redistribu-
tion of entropy with some regions having a much lower
entropy than others.
We acknowledge support from the Brazilian agencies

CNPq and FAPERJ (T. P.), ARO W911NF0710576 with
funds from DARPA OLE Program (RTS), ARO W911NF-
08-1-0338 (M. R. and N. T.), NSF-DMR 0706203 (M.R.),
and the use of computational facilities at the Ohio
Supercomputer Center.

[1] M. Kohl et al., Phys. Rev. Lett. 94, 080403 (2005).
[2] J. K. Chin et al., Nature (London) 443, 961 (2006).
[3] R. Jordens et al., Nature (London) 455, 204 (2008).
[4] U. Schneider et al., Science 322, 1520 (2008).
[5] W. Hofstetter et al., Phys. Rev. Lett. 89, 220407 (2002).
[6] D. Jaksch and P. Zoller, Ann. Phys. (Leipzig) 315, 52

(2005); D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[7] K. Le Hur and T.M. Rice, Ann. Phys. (Leipzig) 324, 1452

(2009).
[8] D. J. Scalapino in Handbook of High Temperature Super-

conductivity, edited by J. R. Schrieffer and J. S. Brooks
(Springer, New York, 2007); arXiv:cond-mat/0610710.

[9] P.W. Anderson et al., J. Phys. Condens. Matter 16, R755
(2004).

[10] T. Giamarchi, Quantum Physics in One Dimension
(Oxford, New York, 2004).

[11] A. Georges et al., Rev. Mod. Phys. 68, 13 (1996).
[12] J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).
[13] A. Moreo and D. J. Scalapino, Phys. Rev. Lett. 66, 946

(1991).
[14] M. Randeria et al., Phys. Rev. Lett. 69, 2001 (1992); N.

Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995).
[15] See supplementary material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.104.066406.
[16] The Mermin-Wagner theorem precludes a T � 0 phase

transition in this 2D system with SUð2Þ symmetry.
[17] J. R. Schrieffer, X.G. Wen, and S. C. Zhang, Phys. Rev. B

39, 11 663 (1989).
[18] T. Paiva et al., Phys. Rev. B 63, 125116 (2001).
[19] A.-M. Dare et al., Phys. Rev. B 76, 064402 (2007).
[20] F. Werner et al., Phys. Rev. Lett. 95, 056401 (2005).

PRL 104, 066406 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 FEBRUARY 2010

066406-4


