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We present a theory of the thermal Hall effect in insulating quantum magnets, where the heat current is

totally carried by charge-neutral objects such as magnons and spinons. Two distinct types of thermal Hall

responses are identified. For ordered magnets, the intrinsic thermal Hall effect for magnons arises when

certain conditions are satisfied for the lattice geometry and the underlying magnetic order. The other type

is allowed in a spin liquid which is a novel quantum state since there is no order even at zero temperature.

For this case, the deconfined spinons contribute to the thermal Hall response due to Lorentz force. These

results offer a clear experimental method to prove the existence of the deconfined spinons via a thermal

transport phenomenon.
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The ground state and low-energy excitations of corre-
lated electronic systems are the subject of recent intensive
interest, and the possible quantum liquid states are espe-
cially the focus both theoretically and experimentally [1–
5]. For the quantum magnets, magnetic susceptibility, neu-
tron scattering, and specific heat are the experimental tools
to study this issue. In the conducting systems, on the other
hand, charge transport properties also offer important clues
to the novel electronic states such as the non-Fermi liquid
or the quantum Hall liquid. Therefore, a natural question is
whether there are any transport properties in insulating
quantum magnets which provide insight into the ground
state. To answer this question, we study in this Letter the
thermal Hall effect theoretically and find several different
mechanisms leading to the classification of the quantum
magnets.

For a finite Hall response, time-reversal symmetry must
be broken due to the magnetic field and/or magnetic order-
ing. The Hall effect in itinerant magnets, where the spin
structure and conduction electron motion are coupled, has
been studied extensively. In this case, in addition to the
usual Lorentz force, the scalar (spin) chirality defined for

three spins as ~Si � ð ~Sj � ~SkÞ plays an important role [6–8].

The scalar chirality acts as a fictitious magnetic flux for the
conduction electrons and gives rise to a nontrivial topology
of the Bloch wave functions, leading to the Hall effect. It is
natural to expect that a similar effect occurs even in the
localized spin systems for, e.g., the spin current [9].
Another important tool to detect charge-neutral modes is
the thermal transport measurement. In low-dimensional
magnets, the ballistic thermal transport property was pre-
dicted from the integrability of the one-dimensional
Heisenberg model [10] and has been experimentally ob-
served in Sr2CuO3 [11]. In �-ðETÞ2Cu2ðCNÞ3, one of the
possible candidates for two-dimensional quantum spin
liquids [1], the thermal transport measurement was used
as a probe to unveil the nature of low-energy spin excita-

tions [12]. The measurements have been limited to the
longitudinal thermal conductivity so far. In this Letter we
predict a nonzero thermal Hall conductivity, i.e., the Righi-
Leduc effect, which will provide important information as
described below.
First, we need to consider the influence of the external

magnetic field on localized spin systems. In addition to the
Zeeman coupling, we have the ring exchange process
leading to the coupling between the scalar chirality and
external magnetic fields. This coupling is derived from the
t=U expansion for the Hubbard model at half filling with
on-site Coulomb interaction U and complex hopping tij ¼
teiAij [13,14] and its explicit form is given by

Hring ¼ � 24t3

U2
sin� ~Si � ð ~Sj � ~SkÞ; (1)

where � is the magnetic flux through the triangle formed
by the sites i, j, and k in a counterclockwise way. Since the
coefficient is proportional to t3=U2, it is expected to be
small. In the vicinity of the Mott transition, however, this
coupling is not negligible. We first examine the effect of
Hring within the spin-wave approximation. Then we find

that if the lattice geometry and the magnetic order satisfy
certain conditions, the magnons can experience the ficti-
tious magnetic field and there occurs the intrinsic thermal
Hall effect, i.e., the thermal Hall conductivity �xy due to
the anomalous velocity of the magnons. In this case, �xy is
independent of the lifetime of magnons (�), whereas the
longitudinal one �xx depends on � [15,16]. It can be
regarded as a bosonic analogue of the quantum Hall effect
with zero net flux [17]. We also derive a TKNN-type
formula [18] of the thermal Hall conductivity for a general
free-bosonic Hamiltonian. It should be possible to apply
this formula to the recently found phonon thermal Hall
effect [19]. Finally, we consider the effect of Hring in

quantum spin liquids. Since there is no magnetic order in
such a system, it has been proposed that deconfined fermi-
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onic spinons exist. In contrast to the magnons, the spinons,
which are the gauge dependent object, can feel the vector

potential ~A just as in the case of electrons, leading to the
Landau level formation [14]. We propose a novel way to
detect the spinon deconfinement via the thermal Hall effect
measurement in a candidate of quantum spin liquid,
�-ðETÞ2Cu2ðCNÞ3.

No-go theorem for the coupling to magnetic flux.—Let
us first consider the spin-wave expansion of Eq. (1) to find
a system in which the intrinsic thermal Hall effect occurs.
We consider the collinear ground state spin configurations.
The fluctuation of the scalar chirality up to the second

order in � ~S � ~S� h ~Si is written as

h ~Sii � ð� ~Sj�� ~SkÞþh ~Sji � ð� ~Sk�� ~SiÞþh ~Ski � ð� ~Si�� ~SjÞ:

Note here that the linear order terms in � ~S vanish since

h ~Sii � h ~Sji ¼ ~0.

As an example, we consider the ferromagnetic
Heisenberg model on a triangular lattice shown in
Fig. 1(a) with an ordered moment S0 along ŷ. In this

case, the quadratic terms in � ~S from Eq. (1) always cancel.
To explain this, let us focus on the edge hjki. From the

upper triangle, this edge gives S0ð� ~Sj � � ~SkÞy. On the

other hand, from the lower triangle, it gives S0ð� ~Sk �
� ~SjÞy, which cancels out the former one. Since such a

cancellation occurs on any edge, Hring in Eq. (1) does not

contribute to the spin-wave Hamiltonian to quadratic order.
This observation leads us to conclude that such a cancella-
tion occurs for any ferromagnetic model where each edge
is shared by the equivalent cells such as plaquettes and
triangles. A similar cancellation occurs for certain antifer-
romagnetic systems. An example is shown in Fig. 1(b). In
this example, there are several different types of ring
exchange processes, but again the cancellation between
the cells sharing a link occurs for the collinear antiferro-
magnetic configuration. Finally, for noncollinear spin
structures, we considered the 120� magnetic order on a

triangular lattice [Fig. 1(c)] and conclude that the cancel-

lation again occurs since ordered components of ~Si and that

of ~S�i are the same as shown in Fig. 1(c).
Intrinsic thermal Hall effect in the spin-wave approxi-

mation.—Once we understand the principles of the cancel-
lation, it is rather easy to find an example where it does not
occur, namely, when the link is shared by inequivalent
cells. An example is the ferromagnetic model on the ka-
gome lattice. In this case, the spin-wave Hamiltonian is
influenced by the magnetic flux �. We will develop below
a theoretical formalism to calculate the thermal Hall con-
ductivity in terms of the Kubo formula. For this purpose,
we consider a general Hamiltonian for noninteracting bo-
sons which can be regarded as a spin-wave Hamiltonian:

H ¼ X
j;�

hð ~Rj�Þ; hð ~Rj�Þ ¼ 1

2

X
~��

t ~��
by

~Rj�þ ~��

b ~Rj�
þ H:c:;

where b ~Rj�
annihilates a boson at the �th site in the jth unit

cell and ~�� are vectors connecting ~Rj� and its neighboring

sites. The hopping t ~��
is in general complex. In momen-

tum space, the Hamiltonian is written as H ¼P
~kb

y
�ð ~kÞH �;�ð ~kÞb�ð ~kÞ, where b�ð ~kÞ is a Fourier trans-

form of b ~Rj�
and repeated indices are summed over. The

average energy current density is defined by ~jE �
i½H;

P
j�

~Rj�hð ~Rj�Þ�=V, where V is the total volume [20].

Using the Fourier transform of
P

�hð ~Rj�Þ defined by

hð ~qÞ ¼ P
j;�e

i ~q� ~Rj�hð ~Rj�Þ, the energy current density is

rewritten as ~jE ¼ @~q½hð0Þ; hð ~qÞ�j ~q¼0=V. Using this fact,

the following convenient expression for ~jE is obtained:

~j E ¼ 1

2V

X
~k

by�ð ~kÞð@ ~kH ð ~kÞ2Þ��b�ð ~kÞ; (2)

where the differential operator @ ~k acts only on H ð ~kÞ2. We

introduce the spin-wave basis ju�ð ~kÞi which diagonalizes

H ð ~kÞ with eigenvalues !�ð ~kÞ. It is important to note that

even in this basis ~jE is not diagonal. In addition to the

expected diagonal term d!�

d ~k
!�ð ~kÞ, there are off-diagonal

terms which can be thought of as arising from anomalous
velocities. As we see below, these terms are responsible for
�xy, just as in the case of the intrinsic anomalous Hall
effect in metals [21].
Starting from the Kubo formula, the following expres-

sion analogous to the TKNN formula [18] can be obtained
for the thermal Hall conductivity �xy:

�xy ¼ � 1

2T
Im

X
�

Z
BZ

d2k

ð2�Þ2 n�ð
~kÞ

� h@kxu�ð ~kÞjðH ð ~kÞ þ!�ð ~kÞÞ2j@kyu�ð ~kÞi; (3)

for the noninteracting spin waves (free bosons) where the

integral is over the Brillouin zone (BZ), and n�ð ~kÞ ¼
ðe�!�ð ~kÞ � 1Þ�1 is the Bose distribution function. The in-

FIG. 1 (color online). (a) A portion of the triangular lattice
with ferromagnetic order. The thick blue arrows indicate the
directions of spins. The counterclockwise rotations (red arrows)
indicate the order of sites in Hring. We use this convention

throughout this Letter. (b) Antiferromagnetic model on a square
lattice. The interaction along the diagonal edge is smaller than
that along the vertical or horizontal edge. (c) A portion of the
triangular lattice with the 120� order.
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tegrand in Eq. (3) is independent of a ~k-dependent phase

change of the spin-wave basis functions ju�ð ~kÞi in a similar
way as for the orbital magnetization [22].

Thermal Hall effect in kagome ferromagnet.—We now
apply the above formula to the ferromagnetic model on the
kagome lattice. The Hamiltonian is given by H ¼P

4;5h4 þ h5 with

h4=5 ¼�Jð ~Si � ~Sj þ ~Sj � ~Sk þ ~Sk � ~SiÞ�K

S
~Si � ð ~Sj � ~SkÞ;

where �J is the ferromagnetic exchange coupling, K is
proportional to sin� according to Eq. (1), and the sum is
taken over all the triangles in the kagome lattice [see
Fig. 2(a)]. Again, note that the sites i, j, and k form a
triangle (4 or 5) in a counterclockwise way.

Using the Holstein-Primakoff transformation [Sþj ¼
ð2S� njÞ1=2bj, S�j ¼ byj ð2S� njÞ1=2, Szj ¼ S� nj with

nj ¼ byj bj], we obtain the spin-wave Hamiltonian as

HSW ¼ 4JS
X
j

nj � S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ K2

p X
hj;ki

ðe�i�=3byj bk þ H:c:Þ;

where tanð�=3Þ ¼ K=J and the sum is taken over
all the nearest neighbor bonds. The Fourier trans-

form of the Hamiltonian is given by H ð ~kÞ ¼ 4JS�
2JS½cosð�=3Þ��1�ð ~k; �Þ with

�ð ~k; �Þ ¼
0 cosk1e

�i�=3 cosk3e
i�=3

cosk1e
i�=3 0 cosk2e

�i�=3

cosk3e
�i�=3 cosk2e

i�=3 0

0
B@

1
CA;

where ki ¼ ~k � ~ai with ~a1 ¼ ð�1=2;� ffiffiffi
3

p
=2Þ, ~a2 ¼ ð1; 0Þ,

and ~a3 ¼ ð�1=2;
ffiffiffi
3

p
=2Þ as shown in Fig. 2(a). The dis-

persions of three bands [0 � !1ð ~kÞ � !2ð ~kÞ � !3ð ~kÞ] for
� ¼ �=3 are shown in Fig. 2(b). In the limit of low
temperature and weak magnetic field, the dominant contri-

bution to the integral in Eq. (3) comes from � ¼ 1 (lowest

band) and small j ~kj due to the Bose factor n�ð ~kÞ. By an

explicit calculation [23], we find that h@kxu1ð ~kÞj@kyu1ð ~kÞi �
�i�j ~kj2=ð27 ffiffiffi

3
p Þ around ~k ¼ 0 and obtain

�xy � ð6JSÞ2
2T

Z 1

0

dk

2�

k

e�JSk
2 � 1

�
�k2

27
ffiffiffi
3

p
�
¼ ��

36
ffiffiffi
3

p T; (4)

where we have replaced the integration over the BZ with

that over all ~k. In this way, a nonzero thermal Hall con-
ductivity is indeed realized by the coupling between the
scalar chirality and the magnetic field in the ferromagnetic
kagome lattice.
Thermal Hall effect in quantum spin liquids.—As dis-

cussed above, the spin Hamiltonian contains the magnetic
flux �, and the spin waves or magnons are influenced by
the magnetic field only through the off-diagonal matrix
elements of the thermal currents, corresponding to the
intrinsic anomalous Hall effect. This is in sharp contrast
to the case of electrons which is coupled to the vector

potential ~A, and the usual Hall effect due to the Lorentz
force occurs there. In this respect, it is interesting to note

that the spin operator ~Si can be represented by the fermion

operators fyi� and fi� (called spinons with spin 1=2) as
~Si ¼

P
�;�0fyi� ~�fi�0=2 [ ~� ¼ ð�x; �y; �zÞ: Pauli matrices,

�;�0 ¼"; # ] with the constraint
P

�f
y
i�fi� ¼ 1. In this

representation, the exchange interaction J ~Si � ~Sj can be

written as �J	y
ij	ij=2 with 	ij ¼ P

�f
y
i�fj�. This 	ij is

called the order parameter of the resonating valence bond,
which describes the singlet formation between the two

spins ~Si and ~Sj. In the mean field approximation for 	ij,

the free fermion model for fyi�; fi� emerges [24]. The
phase aij of the order parameter h	iji ¼ jh	ijijeiaij and

the Lagrange multiplier a0 to impose the constraint above
constitutes the gauge field, which is coupled to the spinons.
In the confining phase of this gauge field, two spinons are
bound to form a magnon. On the other hand, in the decon-
fining phase, the spinons behave as nearly free quasipar-
ticles. The latter case is realized in some of the quantum
spin-liquid states [24]. A similar state has been obtained
also for the Hubbard model [25], which contains the
gapped charge excitations. This charge degrees of freedom
are represented by the U(1) phase factor ei
i ; i.e., the
electron operator ci� is decomposed into the product
fi�e

�i
i , which is coupled to aij � Aij where Aij is the

vector potential (Peierls phase) corresponding to the mag-
netic flux � [25]. Then, the Maxwell term Lg ¼ ð1=gÞ�R
dr
P

��ðF�� � F��Þ2 (g: coupling constant, F�� ¼
@�a� � @�a�, F�� ¼ @�A� � @�A�) is generated by in-

tegrating over the charge degrees of freedom. To summa-
rize, the spinons are described by the Lagrangian

L ¼ X
j;�

fyj�ð@� � ia0j ��Þfj� �X
j;k

tfe
iajkfyj�fk� þLg:

6

4

2

0

0

xk
0

-2 2

2 -2 yk

2

22

FIG. 2 (color online). (a) The unit cell of the kagome lattice
(the area enclosed by the dotted line). The vectors ~ai (i ¼ 1, 2,
and 3) correspond to green (thin line), red (thick line), and blue
(dotted line), respectively. The arrows on the edges indicate the
sign of the phase factor ei�=3 (see main text). The fictitious fluxes
through triangle and hexagon are � and �2�, respectively.
(b) Dispersions of bands in the case of � ¼ �=3 with JS ¼ 1.
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Following the previous works [14,25], we take the spinon
metal with a Fermi surface as a candidate for the 2D
quantum spin liquid realized in �-ðETÞ2Cu2ðCNÞ3 [12].
In a magnetic field Fxy ¼ Bz, the average of the gauge

flux hFxyi ¼ cFxy is induced with c a constant of the order

of unity because of the coupling between Fxy and Fxy in

Lg [14,24]. Therefore, the spinons are subject to the ef-

fective magnetic field hFxyi and to the Lorentz force.

Let us first estimate the spinon lifetime � from the recent
thermal transport measurements in that material. The lon-
gitudinal thermal conductivity is obtained from the
Wiedemann-Franz law by assuming a Fermi liquid of
spinons:

�xx
sp ¼ 2

�2

3

�
"F
@
�

�
k2BT

h

1

d
; (5)

where "F is the Fermi energy and d� 16 �A is the inter-
layer distance. After a subtraction of the phonon contribu-
tion, �xx

sp is estimated to be �0:02 WK�1 m�1 at

T ¼ 0:3 K [12]. We obtain "F�=@ ¼ 56:5 and with "F ¼
J � 250 K, we estimate �� 1:72� 10�12 s. Next we ex-
amine �xy

sp . As has been shown in [14], the gauge flux for

spinons is comparable to the applied magnetic flux and
hence �xy

sp � ð!c�Þ�xx
sp , where !c ¼ eB=mc is the cyclo-

tron frequency with the effective mass of spinon mc.
Estimating mc � @

2=ðJa2Þ with assuming the lattice spac-

ing a� 10 �A, we obtain !c�� 0:086B with B being
measured in tesla. Therefore, the thermal Hall angle
�xy
sp=�xx

sp �!c� becomes of the order of 0.1, which is easily

measurable, with a weak magnetic field B� 1 T such that
the spin-liquid ground state is not disturbed. Also note that
compared with the intrinsic thermal Hall effect discussed
above, the magnitude of this Lorentz-force driven thermal
Hall conductivity is much larger by the factor of
�ð"F�=@Þ2. Therefore, the observation of the thermal
Hall effect is a clear signature of such deconfined spinons
in the spin liquid, and experiments on �-ðETÞ2Cu2ðCNÞ3
are highly desirable.

Another important difference between the spinon con-
tribution and the intrinsic term is that the spinons are

diffusive and see the field ~A. Thus, in a small sample one
can expect mesoscopic effects such as universal conduc-
tance fluctuations of the thermal conductivity as a function
of B. Using the Wiedemann-Franz law, we expect the
relative fluctuation in �xx and �xy to be of order @=ð"F�Þ
for each coherent volume with dimension

ffiffiffiffiffiffiffiffiffi
‘‘in

p
where ‘ ¼

vF� and ‘in ¼ vF�in and �in is some inelastic scattering
time much longer than � at low temperatures. The fluctua-

tion is reduced by
ffiffiffiffi
N

p
if the sample contains N coherent

volumes. We estimate the elastic mean free path ‘ to be
400 Å, so that at low temperatures this effect may be
observable in micron-scale samples.

In conclusion, we have studied theoretically the thermal
Hall effect in the quantum spin systems induced by the
external magnetic field. There are three cases: i.e., (i) no

thermal Hall effect, (ii) intrinsic thermal Hall effect by the
magnons, and (iii) large thermal Hall effect due to the
Lorentz force. Case (i) corresponds to most of the conven-
tional (anti)ferromagnets on triangular, square, and cubic
lattices, while case (ii) corresponds to the magnets on a
particular lattice structure such as kagome, and case (iii)
corresponds to the spin liquid with deconfined spinons.
Therefore, the thermal Hall effect offers a unique experi-
mental method to gain an important insight on the ground
state or low-energy excitations of the quantum magnets.
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