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We present magnetization (M) data of the d-metal alloy Ni1�xVx at vanadium concentrations close to

xc � 11:4% where the onset of long-range ferromagnetic (FM) order is suppressed to zero temperature.

Above xc, the temperature (T) and magnetic field (H) dependencies of the magnetization are best

described by simple nonuniversal power laws. The exponents of M=H � T�� and M�H� are related by

1� � ¼ � for wide temperature (10< T � 300 K) and field (H � 5 T) ranges. � is strongly x

dependent, decreasing from 1 at x � xc to � < 0:1 for x ¼ 15%. This behavior is not compatible with

either classical or quantum critical behavior in a clean 3D FM. Instead it closely follows the predictions

for a quantum Griffiths phase associated with a quantum phase transition in a disordered metal. Deviations

at the lowest temperatures hint at a freezing of large clusters and the onset of a cluster glass phase.
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Magnetic phase transitions in metals continue to offer
challenges to theory and experiment. In recent years, the
focus has shifted from thermal transitions (such as the
onset of ferromagnetism in nickel at a temperature of
630 K [1]) to quantum phase transitions (QPTs) [2] that
occur at zero temperature when a parameter such as pres-
sure or chemical composition is varied. Spin fluctuations
associated with continuous QPTs or quantum critical
points (QCPs) are believed to be responsible for a variety
of exotic phenomena including deviations from the funda-
mental Fermi liquid behavior of normal metals.

Ferromagnetic and antiferromagnetic QCPs have been
observed in transition metal alloys and heavy-fermion
compounds (see Ref. [3] for a review). Quantum critical
behavior is signified by singularities in thermodynamic and
transport properties. According to the standard theory of
ferromagnetic quantum criticality in 3D metals [4], spe-
cific heat C, magnetic susceptibility �, and electrical re-

sistivity � should behave as �� T�4=3, C=T � logðTÞ, and
�ðTÞ � T5=3 when approaching the QCP at low tempera-
tures T. This was observed in NixPd1�x with x ¼ 0:025, at
least over a limited temperature regime [5]. However, most
‘‘clean’’ weak ferromagnets like MnSi [6], ZrZn2 [7], or
Ni3Al [8] show deviations from the above predictions. The
QPT becomes first order [9] and is often accompanied by
the appearance of novel phases.

Many ferromagnetic binary alloys such as Ni1�xCux or
Ni1�xVx in which Tc can be tuned by chemical substitution
x show a still more complicated behavior, even in the
paramagnetic phase. In early investigations [10], the exis-
tence of large magnetic clusters with giant local moments
was proposed to describe the magnetization M data of
these inhomogeneous systems.

Recent theories address the impact of disorder on QPTs
more systematically (for a review, see Ref. [11]). We are
interested in the case of metallic (itinerant) Heisenberg
magnets. For these systems a strong-disorder renormaliza-

tion group [12] predicts an exotic infinite-randomness
QCP, accompanied by quantum Griffiths singularities
[13]. At such a QCP, thermodynamic observables are ex-
pected to be singular not just at criticality but in a finite
region around the QCP called the Griffiths phase. This is
caused by rare spatial regions that are locally in the mag-
netic phase while the bulk is still nonmagnetic. The proba-
bility w of finding such regions is exponentially small in
their volume V, w� expð�bVÞ with b a constant that
depends on the disorder strength. Importantly, the charac-
teristic energy scale � of a locally ordered region also
depends exponentially on its volume, �� expð�cVÞ.
Combining these two exponentials yields an energy spec-
trum Pð�Þ � ���1. The nonuniversal Griffiths exponent
� ¼ b=c takes the value 0 at the quantum critical point
and increases with distance from criticality. This power-
law spectrum gives rise to power-law quantum Griffiths
singularities of many observables, including specific heat
C� T�, susceptibility �� T��1, and the zero temperature
magnetization-field curve, M�H�.
Quantum Griffiths singularities have attracted a lot of

attention, but clear-cut experimental verifications have
been slow to arrive. Many heavy-fermion compounds dis-
play anomalous power laws in CðTÞ and �ðTÞ [14], and
quantum Griffiths behavior was suggested as an explana-
tion [15]. However, in most of these systems, a systematic
variation of the exponents in accordance with theory could
not be observed. Only recently, a partial confirmation could
be found at the ferromagnetic QPT of CePd1�xRhx [16]. It
must also be noted that the interpretation of experiments in
heavy-fermion compounds suffers from additional compli-
cations due to the Kondo effect which plays a crucial role
for the magnetic properties. It is thus desirable to observe
quantum Griffiths singularities in a simpler system.
In this Letter we therefore study the transition metal

alloy Ni1�xVx as an example of an itinerant ferromagnet in
which Tc can be tuned to zero by chemical substitution
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while introducing strong disorder. We show that magneti-
zation and susceptibility close to the critical vanadium
concentration indeed follow the quantum Griffiths scenario
over a wide temperature and magnetic field range.

Polycrystalline spherical Ni1�xVx samples with x ¼
9%–15% were prepared by arc melting from high purity
elements (Ni 99:995%,V 99:8%) and annealed at
900–1050 �C. X-ray diffraction confirmed a single phase
fcc structure with lattice constant a ¼ ð0:352þ
0:023xÞ nm. Magnetization measurements were performed
in a Quantum Design SQUID magnetometer from 1.8–
300 K and magnetic fields up to 5 T. The ac susceptibility
was measured in a pickup coil in a dilution refrigerator
down to 0.05 K and calibrated through the overlap with the
magnetometer data. All data shown are demagnetized.

It is known that Tc of Ni1�xVx is rapidly reduced with
increasing V concentration x [17]. As explained by Friedel
[18], Ni1�xVx resides on a side branch of the Slater-
Pauling curve: a V impurity (with 5 fewer electrons than
Ni) creates a localized charge and a spin reduction on the
neighboring Ni sites. This reduces the average spin mo-
ment by 5�B=V from 0:6�B=Ni leading to a critical con-
centration of about 12%. It also creates large defects
yielding an inhomogeneous magnetization density which
makes Ni1�xVx an ideal compound to study a QPT with
significant ‘‘disorder.’’

The phase diagram resulting from our measurements is
shown in Fig. 1. To get an overview, we first perform a
standard Arrott analysis. Samples with x � 11% show
mean-field behavior, i.e., parallel isotherms of the form
H=M ¼ aþ bM2 as is common for itinerant magnets.
(Mean-field behavior is expected outside the actual critical
region; if the standard theory [4] applied, it would describe

the entire transition up to log corrections.) Tc is extracted
from the Arrott plots via the mean-field T dependencies of
magnetization and susceptibility.
For x > 11%, clear deviations occur from mean-field

behavior (linear Arrott plots) [19], and the determination
of Tc becomes sensitive to model assumptions. In addition
to Arrott plots, we analyze the differential susceptibility
�ðTÞ ¼ dMðTÞ=dH. It exhibits a field-dependent maxi-
mum at TmaxðHÞ, indicating spin ordering or freezing.
Figure 1 shows TmaxðH ! 0Þ estimated by a linear extrapo-
lation of the data taken at 0.5–0.1 T. TmaxðH ! 0Þ is some-
what lower than Tc derived from the high-field mean-field
analysis. We note that the magnetization for x > 11% and
higher fields H > 0:5 T can be described by parallel iso-

therms in a modified Arrott plot [20] [ðH=MÞð1=�Þ ¼ aþ
bMð1=�Þ] with exponents � ¼ 0:5 and an x-dependent
�ðxÞ< 1 [19]. However, this yields a finite Tc well above
Tmax for all x � 15%.
Within our error bars, TmaxðH ! 0Þ is definitely nonzero

for x � 11% but zero for x � 13%. To understand the
behavior at intermediate concentrations, we measure the
ac susceptibility �ac in a small ac field Hac � 0:1 G down
to 50 mK as shown in Fig. 2 for the sample with x ¼
12:25%. A maximum in �acðTÞ at Tmax ¼ 0:19 K marks
spin freezing in 0 mT at a low frequency of 	 ¼ 340 Hz. It
is rapidly suppressed in small dc fields and shifted to higher
T. Tmax is dependent on 	 like in a spin glass, signifying
irreversibility in this system. At higher T, no significant
hysteresis in MðHÞ was found for all samples with a
remanent field larger than the rest field of the magnet of
the order of 10 G.
We emphasize that deviations from linear Arrott plots

and the sensitivity of Tc towards the extrapolation proce-
dure already point to an unconventional QPT. Moreover,
the x dependence of TmaxðH ! 0Þ in the accessible tem-
perature region is better described by an exponential rather
than a power law, making the determination of the xc from
finite-temperature data difficult.
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FIG. 1 (color online). Temperature-concentration phase dia-
gram of Ni1�xVx showing ferromagnetic (FM), paramagnetic
(PM), quantum Griffiths (GP), and cluster glass (CG) phases.
Circles mark Tc found via the Arrott analysis. The gray line is an
extrapolation of TcðxÞ. Also shown are Tmax defined by low-field
maxima in �ðTÞ and Tcross below which frozen clusters dominate
�ðTÞ, leading to superparamagnetism. Inset: Saturation magne-
tization �sat vs x [determined as MðT < 5 K; H > 1 TÞ]. Data
from Ref. [17] for x < 11% are included.
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FIG. 2 (color online). ac susceptibility �ac of the x ¼ 12:25%
sample for several dc magnetic fields H and frequencies 	 of the
(in phase) ac-magnetic field (Hac � 0:1 G) versus temperature
T. Inset shows the frequency dependence of the maximum in
�ðTÞ Tmax. The line follows dTmax=dðlog	Þ ¼ 0:018 K=decð	Þ.

PRL 104, 066402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 FEBRUARY 2010

066402-2



We now turn to the paramagnetic phase above the criti-
cal concentration xc � 11%. In the past, the susceptibility
at higher temperatures (T > 40 K) has been described [10]
by a Curie-Weiss law � ¼ C=ðT � 
Þ þ �orb, but this only
works if the orbital contribution �orb is allowed to vary by a
factor of 3 with concentration x. In our analysis, we keep
the orbital susceptibility x-independent at �orb ¼
6� 10�5 emu=mol, which is the best fit parameter for x <
xc and lies within the reported estimates [21].

The resulting low-field (H ¼ 100 G) spin susceptibility
�m ¼ M=H � �orb is shown in Fig. 3(a) for samples with
x ¼ 11%–15%. At temperatures above 10 K, simple power
laws describes the data well. We parametrize the power law
by �mðTÞ ¼ AðkBTÞ��. The exponent � is determined
from fits between 30 and 300 K (300 K may seem a very
high temperature for analyzing a QPT, but it is still well
below the Curie point of nickel at 630 K; this high bare
temperature scale is another advantage of our material).
Figure 4(a) shows that � varies from about 1 for x ¼
11:4% towards 0.03 for x ¼ 15%. We also analyze the
magnetization-field curve. Figure 3(b) shows Mm ¼ M�
�orbH as a function of field at the lowest T ¼ 2 K for
samples with x > 11%. For fields above H > 3000 G �
kBT=10�B, MðHÞ follows a power law with an exponent
�. Its value [shown in Fig. 4(a)] matches the susceptibility
exponent, 1� � ¼ � for x > 12%.

The results for �mðTÞ andMmðHÞ are in excellent agree-
ment with the predictions for a quantum Griffiths phase if
we identify the Griffiths exponent via � ¼ � ¼ 1� �.
The critical concentration xc can now be determined
from the condition � ¼ 0 which gives xc � 11:4% using
the susceptibility data. Right at criticality, the theory [12]
predicts extra logarithmic corrections (which are notori-
ously hard to verify) to the power laws. Our fits did not
noticeably improve by including logarithmic terms.

To combine the temperature and field dependencies (at
fixed x) of the magnetization we suggest the scaling form

M ¼ H�Yð�H=kBTÞ; (1)

where Y is the scaling function and � is a scaling moment.
The corresponding scaling plot for x ¼ 12:25% is shown in
Fig. 4(b). All MðH; TÞ data for temperatures above 14 K
collapse, confirming H=T scaling. The scaling function Y
is well approximated by the phenomenological form

YðzÞ ¼ A0=ð1þ z�2Þ�=2 where A0 ¼ A=�� is a constant.
We have produced similar scaling plots for the other con-
centrations. The resulting exponent � matches that ob-
tained by a direct fit of �ðTÞ for all x between 11.4% and
15%. The scaling moment � increases from 1�B at x ¼
15% to 12�B at x ¼ 11:4% demonstrating the growth of
the typical cluster size with x ! xc [22]. An analogous
scaling form was used to describe theH=T scaling in heavy
fermions [23]. It also gives the correct exponent for the
nonlinear susceptibility [�3 ¼ dðM=HÞ=dðH2Þ � T��3 for
T � H].
Having established the quantum Griffiths phase, we now

turn to its limits. At T < 10 K, deviations are observed
from the ‘‘Griffiths’’ power laws. For instance, � increases
by about 50% (see Fig. 4). This exponent does not match
1� �. We thus believe that the behavior below 10 K
deviates from the quantum Griffiths scenario either due
to the vanadium distribution not being perfectly statistical
or because the rare regions are not independent.
It was shown [24] that RKKY interactions between the

rare regions lead to a dynamical freezing of the largest
clusters at low T and to the formation of a cluster glass at
even lower T. To explore this possibility, we model the
zero-field susceptibility

�mðTÞ ¼ �1 þ �dyn ¼ A1=ðkBTÞ þ A=ðkBTÞ�dyn (2)

as the sum of a Curie term �1 (describing the frozen
clusters) and a Griffiths term with an exponent �dyn. This

model describes the data in Fig. 3(a) over the entire tem-
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FIG. 3 (color online). (a) Low-field susceptibility �m ¼
M=H � �orb of Ni1�xVx versus temperature T and (b) low-
temperature magnetization Mm ¼ M� �orbH versus magnetic
field H. Dotted lines indicate power laws for T > 10 K and H >
3000 G in (a) and (b), respectively. Solid lines (shown for x >
12%) represent fits to the model (2).
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FIG. 4 (color online). (a) Exponents �; 1� � obtained from
�m � T�� and Mm �H� versus V concentration x. The plot
also shows �loT derived from �mðTÞ below 10 K and �dyn

extracted from the fit to (2). The x-dependence of � can be
fitted to a power law, ð1� �Þ � ðx� xcÞ	c (dotted line), as
expected according to [12] (with 	c � 0:42) or to an exponen-
tial, � ln�� ðx� xcÞ (solid line). (b) H=T scaling plot for x ¼
12:25% showing data at several T from 2–300 K and H ¼
500 G. The line is a fit to the form discussed below (1).
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perature region above Tmax. A similar model can be for-
mulated for the magnetization-field data in Fig. 3(b).

We define a crossover temperature Tcross as the tempera-
ture where �1 exceeds �dyn (see Fig. 1). It can be regarded

as the boundary of the Griffiths phase. For x ¼ 12:25%,
Tcross � 7 K, which is much higher than the cluster glass
temperature 0.19 K found via the ac susceptibility. This
leaves room for a significant superparamagnetic regime
where independent frozen clusters dominate. We note
that superparamagnetism can arise in systems with Ising
spin symmetry even without rare region interactions [25].
However, our system does not show any indications of
reduced spin symmetry.

Further analysis of the Curie term requires insight into
the structure of the rare region interactions. In a purely
percolative scenario, one expects A1 � jx� xcj��c with
the percolation exponent �c ¼ 1:8. Our data indeed show
a divergence of A1 with x ! xc but with an exponent of
about 2.6. Alternatively, one can successfully model the
Curie term as a contribution from a number of frozen
clusters of fixed moment which increases from 2�B for
x ¼ 15% to 15�B for x ¼ 12:07% as xc is approached. A
more detailed discussion will be published elsewhere.

We emphasize that the theory [12,13] for quantum
Griffiths effects in metals was originally developed for
antiferromagnets rather than ferromagnets. In ferromag-
nets, mode-coupling effects produce an additional long-
range interaction [9] which renders the disorder perturba-
tively irrelevant at the clean QCP [26]. However, this does
not preclude the existence of Griffiths singularities because
they are nonperturbative degrees of freedom. In fact, it was
recently shown [27] that the physics of independent rare
regions in a ferromagnet is the same as in an antiferromag-
net. We thus believe that the quantum Griffiths scenario is
applicable to our system, at least above the crossover
temperature where interactions between rare regions be-
come important [28].

In summary, we have presented magnetization and sus-
ceptibility measurements of the transition metal alloy
Ni1�xVx close to the critical concentration for the onset
of ferromagnetism. While the finite-temperature phase
transition in the concentrated Ni regime (x � 11%) is
well described by mean-field behavior, the diluted regime
with low or vanishing Tc cannot be described in terms of
conventional critical behavior. Instead, the data follow the
predictions of a quantum Griffiths phase associated with an
infinite-randomness QCP over a wide temperature and field
region. Previous specific heat [29] and transport data [10]
support this scenario via anomalous power laws in a wide
concentration range (even though they were not discussed
in terms of a Griffiths phase). Deviations at lower T hint at
individual freezing of large clusters before the system
enters a cluster glass phase.
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