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A new model Hamiltonian is developed to describe the ab initio energy differences of the nonisovalent

alloy configurations based on the semiconductor electron counting rule. Monte Carlo simulations using

this Hamiltonian show strong short range order of the GaN=ZnO alloy, which has significant effects on its

electronic structure. We also predict further reduction of the band gap by increasing the synthesis

temperature.
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Hydrogen generation via water photosplitting is a sub-
ject of recent interest due to concerns of global warming
and fossil fuel consumption [1,2]. Metal oxides are attrac-
tive for this task due to their low toxicity, cheap manufac-
turing processes, and stability in aqueous solutions [1,3]. A
recent breakthrough is the discovery of GaN=ZnO, a pseu-
dobinary semiconductor alloy [4–7], which has a water
splitting efficiency much higher than other oxides under
visible light. This high efficiency is partly attributed to its
band gap of 2.7 eV (with 13% ZnO), which is lower than
the 3.5 and 3.4 eVs band gaps of GaN and ZnO [8,9].

The mechanism of this band gap lowering is currently
under intense debate, with theories varying from p-d re-
pulsion [10–12], to Zn impurity levels [11,13], to volume
deformation and structural relaxation [10]. Compounding
this problem is the uncertainty of the atomic structure of
GaN=ZnO. While experimental TEM images and x-ray
diffraction data show that the alloy is in a coherent wurtzite
(WZ) crystal structure, it is not clear whether it forms a
uniform alloy or shows clustering behaviors. GaN=ZnO
represents a new class of alloys (denoted as III–V/II–VI),
which is different from isovalent semiconductor alloys
(e.g., III–V/III–V, II–VI/II–VI). One can characterize it
as a locally nonstoichiometric alloy. Many people still
believe a relatively uniform alloy of this type cannot be
formed. In a way this system is like the codoping system,
where one cation impurity (e.g., Zn) will be accompanied
by one anion impurity (e.g., O), except that here the
composition x is much larger. Previous theoretical calcu-
lations are based on completely random systems [10–12],
completely ordered superlattice systems [12], or impurity
systems [11]. They have also used small supercells (e.g.,
with 16, 32, or 108 atoms) which might not be able to
describe the correct atomic structures.

In this Letter, we take a holistic approach. We first
develop a model Hamiltonian describing the ab initio en-
ergies of different atomic configurations. This model
Hamiltonian is then used in Monte Carlo (MC) simulations
to study the atomic structures of systems containing over a
thousand atoms. The equilibrium atomic structures from
the MC simulations at different temperatures are then used

to calculate their electronic structures. We found that at the
experimental synthesis temperature of 1100 K, uniform
alloys can indeed be formed, albeit with strong short range
order. Consequently, their electronic structure is very dif-
ferent from the completely random alloy. We also predict
that a higher synthesis temperature can yield even lower
band gaps.
There are traditional cluster expansion models to de-

scribe the energies of different alloy configurations [14].
However, here we will develop our model based on the
chemically intuitive electron counting rule in semiconduc-
tors [15], which is also known as Pauling’s electrostatic
valence rule [16] in ionic systems. It states that each cation
and anion have a fixed valence charge regardless of their
local atomic environments. In our case, this can be Gaþ3,
Znþ2, N�3, O�2. To test this, we have analyzed the atomic
charges based on density functional theory (DFT) calcu-
lations for different alloy configurations. Although the
charges depend on the decomposition procedure, the stan-
dard deviation for the same type of atoms (regardless of
their local bonding environments) is 30 times smaller than
their absolute values. One good feature about our model is
that it will not depend on the absolute ionic charges, as
long as QðGaÞ ¼ �QðNÞ, QðZnÞ ¼ �QðOÞ, and QðGaÞ,
QðZnÞ are different, which are all found approximately true
in our analysis.
We next assume Qi is reached by the nearest-neighbor

(j) charge flow, to be denoted asCij, where i and j are atom

indices. In other words,

Qi ¼
X

j2nnb

Cijð�Þ: (1)

Here � denotes the atomic configuration in the system,
where Ga, Zn occupy the WZ cation sites and N, O the
anion sites. Note by definition Cij ¼ �Cji, and Qi ¼
QðGaÞ if atom i is Ga, and so on. Now assuming that it
costs energy to have a charge flow Cij, we can define

Jð�Þ ¼ XN

i¼1

X

j2nnb

C2
ijð�Þ (2)

and use it as a measure of the total energy for this configu-
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ration. Thus our model is

Etotð�; xÞ ¼ a½Jð�; xÞ � J�ðxÞ� þ E�
totðxÞ: (3)

Note E�
totðxÞ ¼ ð1� xÞEGaN þ xEZnO and J�ðxÞ ¼

ð1� xÞJGaN þ xJZnO. For a given �, the Cijð�Þ should be

determined from the charge balance Eq. (1). But there are
more Cijð�Þ thanQi in Eq. (1). We thus further require that

the Cijð�Þ which give the smallest J in Eq. (2) should be

used. It can be proved that this is equivalent to requiring
that Cijð�Þ have no vorticity; i.e., the sum of Cijð�Þ along
any closed loop in the bond topology should be zero. This
is further equivalent to Cijð�Þ ¼ Vjð�Þ � Við�Þ, which is

like a static electric field (with zero curl), that can be
written as the gradient of an electric potential.

Now for a given configuration �, the solution of Við�Þ
will be a linear equation of dimension N, where N is the
number of atoms in the system. It can be proved that if the
relative values of QðGaÞ and QðZnÞ are changed, the
Jð�; xÞ � J�ðxÞ in Eq. (3) will only change a uniform
prefactor for different �. Thus, our model is independent
of the QðGaÞ and QðZnÞ. However, for simplicity, we will
use QðGaÞ ¼ þ3 and QðZnÞ ¼ þ2 in the following.

Equation (3) is tested using direct ab initio DFT calcu-
lated energies for 91 random configurations of 2� 2� 2
and 3� 3� 3 supercells (containing 32 and 108 atoms,
respectively) with ZnO compositions ranging from 0 to 1.
The WZ lattice constant follows the Vegard’s law bðxÞ ¼
ð1� xÞbGaN þ xbZnO. The ab initio calculations are done
with the Vienna ab initio simulation package (VASP 4.6.35)
[17], with the 3d electrons of Ga and Zn treated as valence
electrons.

In Fig. 1(a), our model Hamiltonian with a fitting pa-
rameter a ¼ 1:6554 eV=e2 is tested with the DFT energies
of alloys with ideal WZ atomic sites (without atomic
relaxation). The fit is excellent with a standard deviation
s� 6 meV=atom and correlation coefficient � ¼ 0:986.
The ideal lattice site situation corresponds to pure chemical
bond (thus charge flow) energy, where we expect our
model to work best. In Fig. 1(b), our model with a fitting
parameter a ¼ 1:0263 eV=e2 is compared with the
ab initio energies of relaxed alloy configurations. The
agreement is still good (s� 7 meV=atom, � ¼ 0:973),
but less accurate than the unrelaxed ones. To further im-
prove our model Hamiltonian for this case, we have in-
cluded the Ewald energy Eewð�; xÞ [evaluated with lattice
constant bðxÞ and unrelaxed atomic positions] using
QðGaÞ ¼ þ3, QðZnÞ ¼ þ2, QðNÞ ¼ �3, QðOÞ ¼ �2.
Furthermore, we define E�

ewðxÞ ¼ ð1� xÞEewðGaN; xÞ þ
xEewðZnO; xÞ, where EewðGaN; xÞ and EewðZnO; xÞ are
Ewald energies of pure GaN and ZnO evaluated with
lattice constant bðxÞ. Now we have

Erelax
tot ð�; xÞ ¼ a0½Jð�; xÞ � J�ðxÞ�

þ b0½Eewð�; xÞ � E�
ewðxÞ� þ E�

totðxÞ: (4)

The comparison of this two parameter form model energy
(with a0 ¼ 2:9276 eV=e2, b0 ¼ �0:2161) and the ab initio
energy is given in Fig. 1(c) (s� 3 meV, � ¼ 0:996). The
agreement is even better than the unrelaxed case. The
above approaches have also been tested for AlN=ZnO
alloys and a similar accuracy was found.
We next use our model Hamiltonian in MC simulations

to study the atomic structures for their configurational
degrees of freedom. Although Eq. (4) is more accurate
than Eq. (3) for the relaxed energy, in our MC simulations
test, we found that the resulting atomic structures are
similar. Thus we have used Eq. (3) to speed up our MC
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FIG. 1 (color). Energy comparison between our models and
the DFT energies (in eV/atom) for unrelaxed case (a), relaxed
case (b), and two parameter form (c). Red crosses: small super-
cell configurations. Black filled symbols: the random configura-
tion (triangle) and MC snapshots at 300 K (square) and 1100 K
(circle) of 1280-atom supercell. Blue lines: the exact curve.

FIG. 2 (color). Snapshots of the 300 K (a) and 1100 K (b) MC
simulation runs, and a randomly generated configuration (c). Zn:
silver gray balls. O: red balls. Ga and N atoms are not shown.
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simulations. MC simulations are done for T ¼ 1100 K (the
experimental synthesis temperature [6], which is much
lower than the melting temperatures of ZnO and GaN)
and 300 K with a 8� 8� 5WZ supercell, which has sides

of length �25 �A and contains 1280 atoms. The experi-
mental ZnO composition of x ¼ 0:125 is used. The lattice
parameters of the supercell are fixed in the simulations
according to Vergard’s law. Two types of trial MC moves
are used: (1) nearest-neighbor Zn-Ga, (and O-N) swap-
ping; (2) Zn-O and Ga-N bonded pair swapping. A parallel
tempering (PT) method [18] is used to speed up the simu-
lation at 300 K. 1� 108 MC steps were performed for both
1100 and 300 K MC simulations.

Snapshots of the 1100 and 300 K MC simulations to-
gether with a randomly generated configuration are shown
in Fig. 2. Their Zn-O pair correlation functions are shown
in Fig. 3 (the 1100 K correlation function is essentially
unchanged when a much larger, 13� 13� 8 supercell is
used). From Fig. 2, we can see that at room temperature,
the system is phase separated. However, at 1100 K, the
alloy is relatively uniform, but with strong short range
order as shown in Fig. 3. It is also difficult to characterize
the structure as a codoping case because the Zn (also O)
atoms are connected to each other.

We next study the electronic structures of these three
cases shown in Fig. 2: the 300 and 1100 K snapshots, and
the random configuration. Their atomic structures are re-
laxed with VASP. Their unrelaxed and relaxed total energies
are shown in Figs. 1(a)–1(c), which fit nicely to the pre-
dicted energies, confirming once again the accuracy of our
energy model. The relaxed systems are then calculated
with the PETOT code [19] with norm-conserving pseudo-
potentials (the Zn and Ga 3d electrons are still included in
the valence). The resulting LDA band gap of the 1100 K
system is 1.4 eV. This small value is due to the LDA band
gap error. The LDA calculated GaN and ZnO band gaps are
1.89 and 0.66 eVs, compared with the experimental values
of 3.5 and 3.4 eVs, respectively. If these end point LDA
band gaps are corrected while keeping the bowing parame-
ter the same, we get a corrected theoretical band gap for the
1100 K system as: 3.15 eV. Although many theoretical
studies in the literature have used this approach [12], the
very different band gap corrections for GaN and ZnO are
worrisome since it implies very different conduction band

alignment. To correct this, we have modified s, p, d non-
local potentials to fit the bulk band gaps of ZnO and GaN,
while keeping the valence band levels fixed. The modified
nonlocal potentials are then used to calculate the electronic
structures of the alloy systems. This approach has been
successfully used to study nanostructures and other alloys
[20–22]. We have tested a few sets of the fitting parame-
ters, and they all yield very similar alloy results, confirm-
ing the reliability of this LDAþC (correction) procedure.
Using this LDAþC procedure, the calculated 1100 K

alloy band gap is 3.04 eV, while the 300 K and random
alloy results are 3.12 and 2.02 eVs, respectively. The
calculated 1100 K alloy band gap seems to be 0.3 eV
higher than the experimental result. However, there could
be random fluctuations due to different configurations. To
address that, we have calculated four additional configu-
rations (snapshots during MC simulation) and found their
band gaps being 2.958, 3.037, 2.960, 2.956 eVs. Thus the
lowest gap is 0.08 eV lower than the value we discussed
above. Most importantly, we notice that in their diffuse
reflectance optical measurement, the band gaps for pure
ZnO and GaN are 3.2 and 3.4 eVs [5,6], whereas we have
used 3.4 and 3.5 eVs [8,9] in this work. Thus the experi-
mental band gap lowering is 0.67 eV, which is quite close to
our value of 0.53 eV.
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FIG. 3 (color). Zn-O pair correlation functions of the 300 K
(red) MC, 1100 K (blue) MC, and randomly generated configu-
rations (black).

FIG. 4 (color online). VBM and CBM charge density isosur-
faces of the 300 K MC snapshot (a) and (b), 1100 K MC snap-
shot (c) and (d), and the randomly generated configuration (e)
and (f). The isosurfaces contain 80% of the electron or hole
charges.
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Figure 4 shows the conduction band minimum (CBM)
and valence band maximum (VBM) wave functions for the
three cases calculated using the LDAþC procedure, and
their density of states are plotted in Fig. 5. Based on wave
function charge density projections on individual atoms,
we found that, for the 300 K, the CBM charges on Zn and
O atoms are similar, and they are 6 times larger than the Ga
and N charges. On the other hand, for the random case, the
CBM charge on Zn is very small, and the charge on O is
5 times larger than the charges on Ga and N. For 1100 K,
the situation is more close to 300 K than to the random
case. For VBM, the N has the largest wave function charge
in all cases, although in the random case, the charge on Zn
has a similar magnitude. Thus the random case is similar to
the Zn acceptor and O donor impurity levels picture [11].
When these impurities are not compensated (no ordering),
they form these localized impurity levels. However, in the
1100 K alloy system, the short range order removes these
impurity like states, and changes the situation to a band
alignment like picture. We also calculated the localization
volume Vloc (defined as 1=

R
c 4d3r) of the band edge wave

functions, and found that the random case has a much
smaller localization volume in both VBM and CBM (119
and 171 �A3) than the 300 K and 1100 K cases (1071 and
2129 �A3 for 300 K, 706 and 2617 �A3 for 1100 K), thus
corroborating Fig. 4.

Compared to the results of previous theoretical studies
[10,12], the optical bowing parameter (4.8) estimated from
our calculated 1100 K alloy band gap is quite close to that
in Ref. [10] (4.05), which also agrees well with experiment
[6] (�6 as estimated from their data), but is much smaller
than that in Ref. [12] (11.5). Our calculation shows that
ordering plays an important role which increases the band
gap and reduces the bowing parameter. We further predict a
higher synthesis temperature will lead to smaller band
gaps. Our 1500 K calculation (following the same proce-
dure) yields a band gap of 2.86 eV, 0.1 eV lower than the
1100 K results.

In conclusion, we found that at the experimental syn-
thesis temperature, a uniform GaN=ZnO alloy can be
formed, but with strong short range order. As a result, the
band gap reduction is not due to the Zn acceptor and O
donor levels. Instead, it is more like a GaN=ZnO type-II
band alignment picture where CBM is close to Zn, and
VBM is close to N, although there is no phase separation.
The delocalized wave functions in this case can lead to
high mobility, thus contributing to the high water splitting
efficiency. We believe the experimentally synthesized sam-
ple is cooled and frozen at its high temperature configura-
tion. The equilibrium room temperature structure is phase
separating. We predict that, with even higher synthesis
temperature, the band gap will be further reduced. Our
model Hamiltonian provides a general approach to study
this new type of locally nonstochiometric alloys. Our
preliminary tests show that it is applicable to many other
locally nonstoichiometric systems.
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FIG. 5 (color online). Plots of the density of states of the 300 K
MC snapshot (a), 1100 K MC snapshot (b), and the randomly
generated configuration (c). y axis is in arbitrary unit. The
vertical arrows indicate the CBM and VBM states.
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