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A method is proposed to cool down atoms in a harmonic trap without phase-space compression as in a

perfectly slow adiabatic expansion, i.e., keeping the same populations of instantaneous levels in the initial

and final traps, but in a much shorter time. This may require that the harmonic trap become transiently an

expulsive parabolic potential. The cooling times achieved are shorter than those obtained using optimal-

control bang-bang methods and real frequencies.
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An ‘‘adiabatic’’ process in quantum mechanics is a slow
process where the system follows at all times the instanta-
neous eigenvalues and eigenstates of the time-dependent
Hamiltonian. As the populations do not change, there is no
heating or friction, but the long times needed may render
the operation useless or even impossible to implement.
There is currently a surge of interest in adiabatic theory
and applications [1–4]. A highly desirable goal is to pre-
pare the same final states and energies of the adiabatic
process in a given time tf, without necessarily following

the instantaneous eigenstates along the way. Wewould also
like the procedure to be robust with respect to arbitrary
initial states and realizable. If fulfilled, this goal [5] has
important implications, since most of the current theoreti-
cal and experimental work with cold atoms involves an
adiabatic tuning of the system (frequently an expansion or
trap weakening) after a cooling phase [1], or as part of the
cooling process itself [6]. This adiabatic step has different
objectives: the reduction of velocity dispersion and colli-
sional shifts for spectroscopy and atomic clocks [7]; reach-
ing extremely low temperatures inaccessible by standard
cooling techniques [6]; or, in experiments with optical
lattices, broadening the state before turning on the lattice
[8]. These applications would benefit from a shortcut to
adiabaticity reducing the times by several orders of
magnitude.

The above goal also includes a long-standing question in
the fields of optimal-control theory and finite time thermo-
dynamics, namely, to optimize the passage between two
thermal states of a system [9–12]. For time-dependent
harmonic oscillators, minimal times have been established
using ‘‘bang-bang’’ real-frequency processes believed up
to now to be optimal [11], in which the frequencies are
changed suddenly at certain instants but kept constant
otherwise. In this Letter we shall describe a robust solution
to the stated general goal for atoms trapped in a time-
dependent harmonic oscillator which applies both to equi-

librium and nonequilibrium states. In particular, we de-
scribe cooling processes in which tf can be smaller than the

minimal time of the bang-bang methods considered so far.
As well, a general formalism for transitionless dynamics
[2] leads for the harmonic oscillator to a nonlocal potential,
hindering its realizability, whereas the method proposed
here involves a time-dependent, local, realizable potential.
We shall for simplicity describe our method for states

representing single atoms of mass m, but the same results
are applicable to N-body noninteracting fermions or to a
Tonks-Girardeau gas [13], and can be adapted to Bose-
Einstein condensates in different dimensions using self-
similarity [14]. We consider an effectively one-
dimensional time-dependent harmonic oscillator, HðtÞ ¼
p̂2=2mþm!2ðtÞq̂2=2, with an initial angular frequency
!ð0Þ> 0 at time t ¼ 0 and final frequency !f ¼ !ðtfÞ<
!ð0Þ at time tf. [If the initial and final states are canonical,

the corresponding populations and partition functions are
the same and the temperature is reduced by a factor
!f=!ð0Þ.] The challenge is to find a trajectory !ðtÞ be-
tween these two values so that the populations of the
oscillator levels n ¼ 0; 1; 2; . . . at tf are equal to the ones

at t ¼ 0. Our main tool to engineer !ðtÞ and the state
dynamics will be the solution of the corresponding
Schrödinger equation based on the invariants of motion
[5,15–17] of the form IðtÞ ¼ 1=2½ð1=b2Þq̂2m!2

0 þ 1
m �̂

2�,
where �̂ ¼ bp̂�m _b q̂ plays the role of a momentum
conjugate to q̂=b, the dots are derivatives with respect to
time, and !0 is in principle an arbitrary constant. The
scaling, dimensionless function b ¼ bðtÞ satisfies

€bþ!2ðtÞb ¼ !2
0=b

3; (1)

an Ermakov equation where real solutions must be chosen
to make I Hermitian [18].!0 is frequently rescaled to unity
by a scale transformation of b [5]. Another convenient
choice is !0 ¼ !ð0Þ as we shall see. IðtÞ has the structure
of a harmonic oscillator Hamiltonian as well (as long as
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!2
0 > 0), with time-dependent eigenvectors jnðtÞi and

time-independent eigenvalues ðnþ 1=2Þ@!0. The gen-
eral solution of the Schrödinger equation is a super-

position of orthonormal ‘‘expanding modes’’ c ðt; xÞ ¼P
ncne

i�nðtÞhxjnðtÞi, where �nðtÞ ¼ �ðnþ
1=2Þ!0

R
t
0 dt

0=b2, and the cn are time-independent ampli-

tudes. For a single mode and !2
0 > 0,

�nðt; xÞ ¼
�
m!0

�@

�
1=4 e�iðnþ1=2Þ

R
t

0
dt0ð!0=b

2Þ

ð2nn!bÞ1=2

� eiðm=2@Þð _b=bþi!0=b
2Þx2Hn

��
m!0

@

�
1=2 x

b

�
; (2)

with time-dependent average energy

hHðtÞin ¼ ð2nþ 1Þ@
4!0

�
_b2 þ!2ðtÞb2 þ!2

0

b2

�
: (3)

The average position is zero and the standard deviation

� ¼ ðRdxx2j�nj2Þ1=2 is proportional to b, � ¼
bðnþ 1=2Þ1=2=ðm!0=@Þ1=2, which clarifies the physical
meaning of the scaling factor.

A much studied case corresponds to the frequency scal-

ing!ðtÞ ¼ !ð0Þ=b2 with b ¼ ðAt2 þ 2Btþ CÞ1=2 [15,16].
Substituting this in Eq. (1) gives !2

0 ¼ !ð0Þ2 þ AC� B2.

For a hard wall trap, the square-root-in-time scaling factor
b (A ¼ 0) has been shown to provide fast and efficient
cooling [19,20]. However, for harmonic traps, much more
commonly realized in ultracold experiments, such time
dependence leads to negative values of!2

0 even for modest

cooling objectives, which makes Eq. (2) invalid. Moreover,
linear combinations of a continuum of non-square-
integrable expanding modes would be needed to describe
the evolution of any single eigenstate of the initial trap.
Numerical results using other (adiabatic basis) methods
[21] show that, even though the square-root-in-time scaling
is singularly efficient for adiabatic following, as discussed
below, the cooling performance fails for very short expan-
sion times tf. An alternative, successful strategy put for-

ward here, inspired in inverse scattering techniques for
complex potential optimization [22–24], is to leave !ðtÞ
undetermined at first and impose boundary conditions
(BC) on b and its derivatives at t ¼ 0 and tf, to assure

that any eigenstate of Hð0Þ evolves as a single expanding
mode and that this expanding mode becomes, up to a
position-independent phase factor, equal to the corre-
sponding eigenstate of the Hamiltonian HðtfÞ of the final

trap. In this way the populations in the instantaneous basis
will be equal at initial and final times. Once bðtÞ and its
derivatives are fixed at the boundaries, bðtÞ may be chosen
as a real function satisfying the BC, for example, a poly-
nomial or some other convenient functional form with
enough free parameters. With bðtÞ determined, !ðtÞ is
given by Eq. (1).

Let us first discuss the BC at t ¼ 0. By choosing bð0Þ ¼
1, _bð0Þ ¼ 0, Hð0Þ and Ið0Þ commute and have common

eigenfunctions. We set !0 ¼ !ð0Þ from now on so that
€bð0Þ ¼ 0 must hold as well. These BC imply that any
initial eigenstate of Hð0Þ, unð0Þ will evolve according to
the expanding mode (2) for all later times. In general HðtÞ
and IðtÞ will not commute for t > 0, so that the expanding
mode �nðtÞ may have more than one component in the
‘‘adiabatic basis’’ of instantaneous eigenstates of HðtÞ,
funðtÞg, n ¼ 0; 1; 2; . . . , where unðtÞ ¼ ðm!ðtÞ

�@ Þ1=4 1
ð2nn!Þ1=2 �

exp½� m
2@!ðtÞx2�Hn½

ffiffiffiffiffiffiffiffiffi
m!ðtÞ

@

q
x�. At time tf wewant�nðtfÞ to

be proportional, up to the global phase factor ei�nðtfÞ, to the
corresponding eigenstate of the final trap unðtfÞ. Thus we
impose bðtfÞ ¼ � ¼ ð!0=!fÞ1=2, _bðtfÞ ¼ 0, €bðtfÞ ¼ 0.

From Eq. (3), one finds hHðtfÞin in terms of bf ¼ bðtfÞ
and _bf ¼ dbðtÞ=dtjt¼tf . Since bf and _bf can be set inde-

pendently, we can minimize the terms depending on them
separately, and the global minimum is found to be pre-
cisely at the adiabatic energy ðnþ 1=2Þ@!f, which corre-

sponds to our BC. Any other choice would necessarily
produce ‘‘frictional heating.’’
Substituting the polynomial ansatz bðtÞ ¼ P

5
j¼0 ajt

j

into the six BC gives six equations that can be solved to
provide the coefficients, bðtÞ ¼ 6ð�� 1Þs5 � 15ð��
1Þs4 þ 10ð�� 1Þs3 þ 1, where s ¼ t=tf; see Fig. 1. The

universality of the solution indicates that there is no fun-
damental limitation on tf as long as the potential is truly

harmonic, more on this later. At initial and final times 0 and
tf, !ðtÞ ¼ !0=b

2ðtÞ, but this relation does not hold in

general for an arbitrary intermediate time.
The above-mentioned six conditions leave time-

dependent phases ei�nðtÞ of no relevance regarding the
population of the nth level. In particular, stationary density
operators with respect to Hð0Þ [e.g., a canonical state, or a
pure state junð0Þihunð0Þj] are mapped onto the correspond-
ing stationary states of HðtfÞ with the phases canceled. In

other cases the phases remain, but the populations are

preserved. Note that ei�nðtÞ, see Eq. (2), is the phase factor
that the initial state unð0Þ would acquire in a virtual adia-
batic process with adiabatic (instantaneous) energy ðnþ
1=2Þ@!0=b

2. Phase control may also be imposed by adding

integral conditions, such as �ðtfÞ ¼
Rtf
0 dt 1

b2ðtÞ ¼
!f

!0
t0,

0.0 0.2 0.4 0.6 0.8 1.0
0
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t tf

b

FIG. 1 (color online). Examples of ansatz for b. A simple
polynomial ansatz (solid line), and an exponential of a poly-
nomial [dashed line, expðP5

j¼0 djt
jÞ]. !ð0Þ ¼ 250� 2� Hz,

!ðtfÞ ¼ 2:5� 2� Hz, � ¼ 10.
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where t0 is some desired time. This requires a more com-
plicated ansatz for b, such as a polynomial of higher
degree.

Numerical examples of frequencies !ðtÞ and energies
hHðtÞi of several expansions that provide a shortcut to
adiabaticity are given in Figs. 2–4, using the b shown in
Fig. 1 for !0 ¼ 250� 2� Hz and !f ¼ 2:5� 2� Hz

(� ¼ 10). These values can be found in actual experiments
[25]. We could formally study subhertz frequencies!f, but

they would render the trap very sensitive to low-frequency
acoustic noise [26]. Compare first the finite times consid-

ered in these examples (from 2 to 25 ms) with the times tðadÞf

necessary for actual adiabatic following. The adiabaticity

condition for the harmonic oscillator is j ffiffiffi
2

p
_!=ð8!2Þj � 1.

For a linear ramp, !ðtÞ ¼ !0 þ ð!f �!0Þt=tf, this im-

plies a very long time, tðadÞf � 1:1 s. In practice one would

need 6 s to achieve a 1% relative error in the final energy of
the ground state with the linear ramp. A much more
efficient (still adiabatic) strategy is to distribute _!=!2

uniformly along the trajectory, i.e., _!=!2 ¼ c, c being
constant. Solving this differential equation and imposing
!f ¼ !ðtfÞ we get !ðtÞ ¼ !0=½1� ð!f �!0Þt=ðtf!fÞ�.
This corresponds to the case A ¼ 0, 2B ¼ �ð!f �
!0Þ=ðtf!fÞ, C ¼ 1 (i.e., a square-root-in-time scaling fac-

tor), and implies tðadÞf � 11 ms. With this optimized adia-

batic trajectory a 1% error level for the ground state energy
is achieved after 45 ms.

Let us now return to the fast-track trajectories designed
with the invariant method. A prominent feature, see
Fig. 2(b), is that !2ðtÞ may be negative during some time
interval in which the potential becomes an expulsive pa-
rabola [27]. In general the (imaginary) frequency of the
repulsive region increases for shorter cooling times as
shown in Fig. 2(b). A simple estimate for the polynomial
ansatz is that the imaginary frequencies occur if tf <

1=ð2!fÞ, the critical time is �30 ms for the final fre-

quency of the examples. The transient energies below the
final one, see, e.g., the solid line in Fig. 3(a) near t=tf ¼
0:15, are a consequence of the repulsive regime and should
not be interpreted as useful cooling in a time shorter than
tf. The kinetic energy would grow without bound if the

repeller potential were kept frozen when the energy is
minimal. Similarly, if the potential were suddenly changed
into its final form, VðtfÞ, the total energy would be higher

than the adiabatic energy.
Figure 3 illustrates that a given cooling objective may be

attained in less time than the minimal time required by
real-frequency bang-bang trajectories, optimal among real-
frequency trajectories [11]. For the three-jump trajectory
[11]

!ðtÞ ¼

8>>><
>>>:

!0 ðt ¼ 0Þ
!1 ð0< t < �1Þ
!2 ð�1 < t < �1 þ �2Þ
!f ðt ¼ tf ¼ �1 þ �2Þ:

(4)

The fastest process to reach the target state corre-
sponds to !1 ! 0 and !2 ! 1 [11] with tmin

f ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!f=!0

q
=

ffiffiffiffiffiffiffiffiffiffiffiffi
!f!0

p
. These results are based on

optimal-control theory, initial and final thermal states,
and the constraint !1;2 > 0. Clearly, relaxing the positivity
condition for the intermediate frequencies makes faster
processes with tf < tmin

f possible, which, moreover, in-

volve only finite frequencies. Since tmin
f has been used to

justify a finite time version of the third principle (if !f !
0, tmin

f ! 1 as !�1=2
f ) and maximal cooling rates, the

present findings call for a revision of these conclusions.
A bang-bang example is shown in Fig. 3 (dot-dashed lines),
for tf ¼ 2 ms, much shorter than the time tmin

f � 6 ms
a
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FIG. 3 (color online). Cooling in tf ¼ 2 ms. (a) Average en-
ergies of the ground expanding mode for b taken as a polynomial
(solid line), as an exponential of a polynomial (dashed line), and
for a piecewise constant frequency ‘‘bang-bang’’ process (dot-
dashed line) with !1 ¼ i0:9!0 and !2 ¼ !0. Other parameters
as in Fig. 1. (b) The squared frequencies !2ðtÞ.

a

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

t tf

H
t

0
E

0
0

b

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

t tf

2
t

2
0

FIG. 2 (color online). (a) The average energies of the ground
state expanding mode for different final times tf: tf ¼ 25 ms

(solid line), tf ¼ 15 ms (dashed line), tf ¼ 10 ms (dotted line),

and tf ¼ 6 ms (dash-dotted line). Other parameters as in Fig. 1

(polynomial b). (b) The corresponding squared frequency !2ðtÞ.
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FIG. 4 (color online). Average energies for expanding modes
n ¼ 1 (solid line), n ¼ 2 (dashed line), and n ¼ 3 (dotted line).
(a) tf ¼ 2 ms and (b) tf ¼ 25 ms. Other parameters as in Fig. 1

(polynomial b).
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corresponding to the initial and final frequencies chosen.
!1 ¼ i!I is imaginary, and the corresponding b1ðtÞ is
obtained from the Ermakov equation with initial conditions

b1ð0Þ ¼ 1 and _b1ð0Þ ¼ 1. In the second segment we as-
sume !2 real and the final conditions b2ðtfÞ ¼ � and
_b2ðtfÞ ¼ 0. The matching conditions b1ð�1Þ ¼ b2ð�1Þ and
_b1ð�1Þ ¼ _b2ð�1Þ are then solved for �1 and tf; see Fig. 3

and its caption for details. Of course the discontinuous
jumps in this type of trajectory call into question its realiz-
ability. Figure 3 also shows two smooth trajectories from
the invariant method for tf ¼ 2 ms corresponding to two

different ansatz for b, polynomial and exponential of a
polynomial. The merits of the polynomial ansatz are its
simplicity and the smoothness achieved, but other forms
may be found to satisfy further requirements such as, for
example, minimizing the maximal frequencies along the
trajectory.

The shortcut to adiabaticity using invariants applies to
arbitrary initial states, superpositions or mixed. Figure 4
illustrates that the same !ðtÞ trajectories used before for
the ground state work as well for excited states.

For the experimental realization, we propose the use of a
time-dependent far-off resonance optical dipole trap (red
detuned) and an antitrap (blue detuned). We have so far
considered the 1D case. Formally the three coordinates in
an ideal harmonic trap are uncoupled so the expansion
processes can be treated independently, but, in our scheme,
changing the intensity of a laser beam affects simulta-
neously the longitudinal and transversal frequencies.
Fortunately, the degrees of freedom available, laser inten-
sities and waists [28], are enough to satisfy the desired
frequency trajectory in one coordinate, say longitudinal,
while keeping the other frequency constant. A second
option is to leave the waists constant and add further lasers
to compensate for the transversal frequency change. We
also have to take into account the anharmonicity and finite
depth since they limit the possible excitation of the (initial

and final) states. A Gaussian potential V0ð1� e�2x2=w2Þ
mimics the harmonic oscillator with frequency ! ¼
ð2=wÞ ffiffiffiffiffiffiffiffiffiffiffiffi

V0=m
p

holding� V0=ð@!Þ bound states. By making
tf smaller the anharmonicity effects become more impor-

tant. Using time-dependent perturbation theory and the
polynomial ansatz for b, we find the condition w2 �
3@½ðnþ 1Þ2 þ n2�=ð8mtf!

2
fÞ for a high fidelity of the vi-

brational state n. Solving numerically the time-dependent
Schrödinger equation with the mass of Rb-87, the fidelity
for the ground state when tf ¼ 2 ms is 0.91 with w ¼
50 �m, and 0.99 with w ¼ 150 �m. It decreases to 0.84
and 0.98 if tf ¼ 1 ms.

As an outlook, similar techniques may be applied to the
control of soliton dynamics of Bose-Einstein condensates
[27,29], adiabatic computing [3,4], a time-of-flight ap-
proach based on fast driven expansions, or in combination
with transport of ultracold atoms [30].
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