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We show that the detection efficiencies required for closing the detection loophole in Bell tests can be

significantly lowered using quantum systems of dimension larger than two. We introduce a series of

asymmetric Bell tests for which an efficiency arbitrarily close to 1=N can be tolerated using

N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to

61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising

considering recent progress in atom-photon entanglement and in photon hyperentanglement.
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Quantum theory predicts that measurements on sepa-
rated entangled systems will produce outcome correlations
that are not locally causal, as implied by the violation of
Bell inequalities [1]. Bell inequality violations have been
confirmed in numerous experiments, providing strong in-
dication that nature is nonlocal. However, imperfections in
such experiments open various loopholes that could in
principle be exploited by a locally causal model to repro-
duce the experimental data. Given the far-reaching signifi-
cance of nonlocality, it appears highly desirable to perform
a Bell experiment free of any loopholes. While promising
proposals have been made recently [2], accompanied by
significant experimental progress [3], a loophole-free Bell
experiment is still missing.

There are two basic requirements for a loophole-free
Bell experiment. First, a spacelike separation between the
observers is necessary to ensure that no subluminal signal
can propagate between the particles. Failure to satisfy this
condition is known as the locality loophole. Second, the
particle detection efficiency must be larger than a certain
level (usually high); otherwise undetected events can be
exploited by a local model to reproduce the quantum
statistics [4,5]. Failure to satisfy this condition is known
as the detection loophole. All experiments performed so far
suffer from at least one of the two above loopholes. Experi-
ments carried out on atoms [3,6] could close the detection
loophole, but are unsatisfactory from the locality point of
view. Photonic experiments, on the other hand, could close
the locality loophole [7], but current photon detection effi-
ciencies are still too low for closing the detection loophole.

Closing the detection loophole is also crucial from the
perspective of quantum information processing applica-
tions based on quantum nonlocality [8–10]. Indeed, if the
detection loophole is not closed, then the data produced in
the experiment could as well have been produced by
classical means, and thus does not provide any advantage.

For the Clauser-Horne-Shimony-Holt (CHSH) Bell in-
equality [11], the threshold detection efficiency is 82.8%

for a maximally entangled qubit pair and can be lowered
down to 66.7% using partially entangled states, as shown
by Eberhard [12]. It appears however very difficult to find
Bell inequalities that can tolerate lower efficiencies than
the CHSH inequality in the bipartite case. For qubits, only
marginal improvements have been reported [13–15].
Massar has shown that higher dimensional systems can
tolerate a detection efficiency that decrease exponentially
with the dimension d, but this result is of limited practical
interest since an improvement over the CHSH inequality is
obtained only for d * 1600 [16]. Up to now, no practical
bipartite Bell test was known to tolerate a detection effi-
ciency lower than Eberhard’s limit of 66.7%.
More recently, the detection loophole has also been

studied in an asymmetric configuration [17,18], inspired
from atom-photon entanglement. Since atomic measure-
ments are very efficient (� � 1), a much lower efficiency,
compared to the symmetric case, can be tolerated for the
photon—as low as 43% using qubits and a three-setting
Bell inequality [18].
Here, we show that (low dimensional) qudits offer a

significant advantage over qubits for closing the detection
loophole. For asymmetric Bell tests, we show that an
efficiency arbitrarily close to 1=N can be tolerated using
N-dimensional systems and a family of N-setting Bell in-
equalities introduced by Collins and Gisin [19]. Our con-
struction is optimal in the sense that a Bell test with N
measurement settings cannot tolerate a detection efficiency
smaller than 1=N. In the symmetric scenario, we show that
an efficiency as low as 61.8% can be tolerated using four-
dimensional states and a four-setting Bell inequality intro-
duced in [14]. To the best of our knowledge, these findings
improve significantly over all results in the literature for
bipartite Bell tests with a reasonable number of measure-
ment settings and dimensions. Moreover, the prospects of
experimental implementations look promising considering
recent experimental progress in atom-photon entanglement
[20] and in photon hyperentanglement [21–23].
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Our constructions also provide simple examples of di-
mension witnesses [24,25], i.e., Bell-type inequalities
which yield a lower bound on the Hilbert space dimension
necessary to produce certain quantum correlations.

Preliminaries.—We consider a Bell-type scenario in
which two distant parties, Alice and Bob, can choose
among N measurement settings with binary outcomes.
Alice’s settings are denoted Ax with x 2 f1; . . . ; Ng and
her output bit is denoted a 2 fþ1;�1g; similarly for Bob
we have By with y 2 f1; . . . ; Ng and b 2 fþ1;�1g. The
experiment is characterized by the set of joint probabilities
PðAx ¼ a; By ¼ bÞ to get outcomes a and b when Ax and

By are measured. All these probabilities are determined by

the following subset of probabilities: PðAxByÞ � PðAx ¼
1; By ¼ 1Þ, PðAxÞ � PðAx ¼ 1Þ, and PðByÞ � PðBy ¼ 1Þ,
which it is thus sufficient to consider.

The detection efficiencies for Alice and Bob are denoted
�A and �B. We will study the symmetric configuration,
where � � �A ¼ �B, as in standard photonic experiments,
as well as the asymmetric configuration, where�A ¼ 1 and
�B < 1, inspired from atom-photon entanglement.

Asymmetric case.—We now introduce a family of Bell
tests that involve entangled states whose local Hilbert
space dimension is N and which tolerate a detector effi-
ciency arbitrarily close to 1=N. Our construction is based
on a family of Bell inequalities introduced in [19], which
are given by INN22 � 0, where

INN22 ¼ �PðA1Þ �
XN

y¼2

PðByÞ þ
XN

y¼1

PðA1; ByÞ

þ XN

x¼2

PðAx; BxÞ �
X

1�y<x�N

PðAx; ByÞ: (1)

Note that we have written these inequalities in a different
form than the one used in [19].

Because of the limited efficiency of his detector, Bob
does not always obtain a conclusive result. In order to close
the detection loophole, one must ensure that the whole set
of data, including inconclusive results, violates a Bell
inequality. To take into account inconclusive events, we
simply choose here that Bob outputs ‘‘�1’’ in case of
nondetection. Thus Bob’s output is still binary and the
above inequalities can be used. The measurement outcome
probabilities are however modified according to
PðAx; ByÞ ! �BPðAx; ByÞ, PðAxÞ ! PðAxÞ, and PðByÞ !
�BPðByÞ. Introducing these expressions in (1) and dividing
by �B, we obtain the modified (efficiency-dependent) Bell
inequalities INN22ð�BÞ � 0, where

INN22ð�BÞ ¼ INN22 � 1� �B

�B

PðA1Þ: (2)

A violation of the modified inequality INN22ð�BÞ � 0 im-
plies that the original Bell inequality INN22 � 0 can toler-
ate a detection efficiency of �B for Bob’s detector.

We now give an explicit entangled state and quantum
measurements that violate the inequality INN22ð�BÞ � 0

when �B > 1
N . Note that our construction is optimal in

the sense that no violation is possible if �B � 1
N . Indeed,

any Bell test with N measurement settings admits a simple
local model when �B � 1

N [26]. The quantum state is

defined in CN � CN and given in the Schmidt form as

jc �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

N � 1

s �XN�1

k¼1

jkijki
�
þ �jNijNi; (3)

with � 2 ½0; 1�. The measurement operators for Alice can
be written as Ax ¼ Aþ

x � A�
x , where A

þ
x is the projector on

the þ1 subspace and A�
x ¼ I � Aþ

x on the �1 subspace.
We take the projectors Aþ

x to be one-dimensional real-

valued projectors, parameterized by the unit vectors ~Ax 2
RN , i.e., Aþ

x ¼ jaxihaxj, with jaxi ¼
P

N
i¼1

~Axijii. The mea-
surement operators for Bob are defined in the same way

with unit vectors ~By 2 RN .

The measurements of Alice are then defined by

~A1 ¼ ð0; . . . 0; 0; 0; 1Þ
~A2 ¼ ð0; . . . 0;�p2;

p1

N�1 ; p0Þ
~A3 ¼ ð0; . . .�p3;

p2

N�2 ;
p1

N�1 ; p0Þ
..
.

~AN�1 ¼ ð�pN�1; . . .
p3

N�3 ;
p2

N�2 ;
p1

N�1 ; p0Þ
~AN ¼ ðpN�1; . . .

p3

N�3 ;
p2

N�2 ;
p1

N�1 ; p0Þ

(4)

where p2
0 ¼ 1

N , p
2
1 ¼ N�1

N , and p2
kþ1 ¼ ð1� 1

ðN�kÞ2Þp2
k for

k � 1. The measurements of Bob are defined by

~B1 ¼ ð0; . . . 0; 0;�q1; q0Þ
~B2 ¼ ð0; . . . 0;�q2;

q1
N�1 ; q0Þ

~B3 ¼ ð0; . . .�q3;
q2

N�2 ;
q1

N�1 ; q0Þ
..
.

~BN�1 ¼ ð�qN�1; . . .
q3

N�3 ;
q2

N�2 ;
q1

N�1 ; q0Þ
~BN ¼ ðqN�1; . . .

q3
N�3 ;

q2
N�2 ;

q1
N�1 ; q0Þ

(5)

where q21 þ q20 ¼ 1, and q2kþ1 ¼ ð1� 1
ðN�kÞ2Þq2k for k� 1.

The probabilities entering (2) are then given by

PðA1Þ ¼ �2

PðByÞ ¼ 1� �2

N � 1
ð1� q20Þ þ �2q20 for 2 � y � N

PðA1; ByÞ ¼ �2q20 for 1 � y � N

PðAx; BxÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2

N � 1

s

p1q1 þ �p0q0

�
2

for x � 2

PðAx; ByÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2

N � 1

s
p1q1
1� N

þ �p0q0

�
2

for x > y � 1:

(6)

In order to maximize the quantum violation of the inequal-
ity (2), we choose the free parameter � defining the quan-

tum state (3) as �2 ¼ 1�q2
0

1þ½ðN�1Þ2�1�q2
0

, so that the joint

probabilities PðAx; ByÞ with x > y � 1 cancel out. Note

that 0 � � � 1 for 0 � q0 � 1. We then find that

PRL 104, 060401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 FEBRUARY 2010

060401-2



INN22ð�BÞ ¼ �2
�
� 1

�B

þ q20N

�
: (7)

This quantity is positive if �B > 1
Nq20

. Therefore, the in-

equality INN22ð�BÞ � 0 can be violated for any value of
�B > 1

N by taking q0 sufficiently close to 1.

In the limit q0 ! 1, we get � ! 0. Thus the state pro-
viding the lowest detection efficiency is arbitrarily close to
a maximally entangled state of dimension N � 1. In par-
ticular in the qubit case (N ¼ 2), it becomes close to a
separable state, analogously to the results in [12,17,18].

Note that while the measurement settings (4) and (5) are
well adapted for partially entangled states (� ! 0), they do
not provide the maximal violation for all values of �. It
would be interesting to find a construction that is optimal
for any degree of entanglement. For the case N ¼ 3, we

optimized numerically the unit vectors ~Ax and ~By to find

the optimal threshold efficiency �B as a function of the
degree of entanglement � (see Fig. 1). Similarly to results
in the qubit case [12,17,18], �B decreases with �. We also
investigated the influence of background noise, by replac-
ing the pure state jc �i in Eq. (3) by a mixed state of the
form � ¼ ð1� pÞjc �ihc �j þ p1=N2, where p is the
amount of white noise. For small values of �, �B becomes
quite sensitive to noise, due to the fact that the violation of
the inequality I3322ð�BÞ � 0 becomes small.

We have also investigated [27] the case where the effi-
ciency of Alice’s detector is close to (but not exactly) one,
which might be relevant from experimental perspectives.

Dimension witnesses.—For the case N ¼ 3, we have
strong numerical evidence [27] that the inequality
I3322ð�BÞ � 0 cannot be violated by performing measure-
ment on qubits if �B � 0:428. Therefore the inequality
I3322ð�B ¼ 0:428Þ � 0 is a dimension witness [24]: its
violation guarantees that qutrits (at least) have been pre-
pared. We conjecture that the inequalities INN22ð�BÞ � 0

with �B ’ 1=N can only be violated by states of local
dimension N, and thus are N-dimensional witnesses.
Symmetric case.—Here we show that the threshold de-

tection efficiency can also be significantly lowered using
low dimensional qudits. Specifically, we consider the case
N ¼ 4 [28] and the Bell inequality I44422 � 0 introduced in
Ref. [14], which can be rewritten as

I44422 ¼ Ið1;2;1;2ÞCH þ Ið3;4;3;4ÞCH � Ið2;1;4;3ÞCH � Ið4;3;2;1ÞCH

� PðA2Þ � PðA4Þ � PðB2Þ � PðB4Þ (8)

with Iði;j;m;nÞ
CH � PðAi; BmÞ þ PðAj; BmÞ þ PðAi; BnÞ �

PðAj; BnÞ � PðAiÞ � PðBmÞ. To take into account incon-

clusive events we choose that Alice and Bob output ‘‘�1’’
in case of nondetection. The probabilities are thus modified
according to PðAx; ByÞ ! �2PðAx; ByÞ, PðAxÞ ! �PðAxÞ,
PðByÞ ! �PðByÞ. Inserting these values in (8), we obtain,

similarly to the asymmetric case, a modified (efficiency
dependent) Bell inequality I44422ð�Þ � 0.
Next we consider entangled states of the form (3) with

N ¼ 4 (entangled ququarts), and measurement operators

parameterized as previously by unit vectors ~Ax and ~By [27].

In the limit � ! 0, we show that the inequality I44422ð�Þ �
0 is violated if �> ð ffiffiffi

5
p � 1Þ=2 ’ 0:618. Using the tech-

niques of [29], we checked that this value is optimal for
I44422, i.e., that no violation is possible if� � 0:618. For the
maximally entangled state (� ¼ 1

2 ), an efficiency of

76.98% can be tolerated. Figure 2 presents the minimal
detection efficiency � for intermediate values of �, ob-
tained by performing a numerical optimization over the

unit vectors ~Ax and ~By. These results represent a significant

improvement over the best values known so far for small
systems, namely, 79.39% for maximally entangled qu-
quarts [13], and 66.67% for weakly entangled qubits
[12]. In Fig. 3, we analyze the influence of background
noise. For experimentally realistic values of the back-

FIG. 1 (color online). Asymmetric Bell test with qutrits.
Threshold efficiency �B as a function of the degree of entangle-
ment � for different values of background noise p. For p ¼ 0,
the efficiency tends to 33.3% when � ! 0, and is equal to 66.7%
at the value � ¼ 0 (i.e., for maximally entangled qubits). For
p > 0, the curve exhibits a plateau when the efficiency becomes
equal to the one given by maximally entangled qubits.

FIG. 2 (color online). Symmetric Bell test with four-
dimensional systems. Threshold efficiency � as a function of
the degree of entanglement � for different values of background
noise p. For maximally entangled states (� ¼ 1

2 ) an efficiency of

76.98% can be tolerated; for very partially entangled states (� !
0), the efficiency drops down to 61.8%.
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ground noise (p < 2%), our model can tolerate efficiencies
about 5%–8% lower compared to the CHSH inequality.

Experimental perspectives.—In the asymmetric case,
related to atom-photon entanglement, we showed that an
efficiency arbitrarily close to 1=N can be tolerated for the
photon, using N-dimensional quantum states. Therefore,
the (typically) low photon detection efficiency, usually the
main experimental limitation, can be compensated by in-
creasing the Hilbert space dimension, which appears fea-
sible. Notably, qutrit entanglement has been recently
observed between an atomic ensemble and a photon [20].
Since the experiment [20] used orbital angular momentum
as the degree of freedom, it could in principle be performed
with higher dimensional systems as well.

For the symmetric case, we showed that efficiencies as
low as 61.8% can be tolerated using four-dimensional
states, thus providing a significant improvement over the
CHSH inequality—the best inequality known so far. This
appears promising from the perspective of photon experi-
ments, in which higher dimensional entanglement has been
demonstrated using orbital angular momentum [30], time
bins [31], multipath entanglement [32], and hyperentan-
glement [21], i.e., photons entangled in several degrees of
freedom [22]; see [33] for a review. Hyperentanglement
appears here particularly relevant, since four-dimensional
entangled states can be conveniently obtained using pho-
tons entangled in both polarization and mode [23].
Partially entangled states of the form (3), as well as the
required measurements, can be implemented using stan-
dard equipment [27]. Moreover, since the measurements
involved in our model have binary outcomes, only one
detector is required on each side. Considering a realistic
background noise of 1% (i.e., visibilities of 99%), the
required overall efficiency, including transmission from
the source to Alice (or Bob) and photon detection, is
�69% (see Fig. 3). For a measurement time of 100 ns,
the distance between the source and Alice (Bob) should be
of the order of 50 meters, to ensure spacelike separation.

On such distances transmission losses are negligible. The
main limitation is the collection of photons from the
source. Still, collection efficiencies higher than 80% have
been achieved [34], which imposes a photon detection
efficiency greater than 86%. This is a demanding feature,
but efficiencies of the order of 90% have already been
reported [35]. Thus, overall, the perspective of implement-
ing a loophole-free experiment using photon hyperentan-
glement seems very promising.
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