Comment on "Emergence of a Superconducting State from an Antiferromagnetic Phase in Single Crystals of the Heavy Fermion Compound Ce₂PdIn₈"

A recently published Letter [1] has reported on the antiferromagnetism (AF) and ambient-pressure superconductivity (SC) in a Ce₂PdIn₈ single crystal with $T_N \sim 10$ K and $T_c = 0.68$ K, respectively. Although we very much appreciate the effort exerted to prepare and characterize this new heavy fermion (HF) superconductor (SC), we would like to add a cautionary note that the reported Néel temperature coincides remarkably with $T_N =$ 10.2 K of CeIn₃ [2]. It therefore leads us to consider the possible presence of CeIn₃ in the samples that were investigated. In other $Ce_n TIn_{3n+2}(n = 1, 2)$ compounds [3–5] the AF is either absent (T = Co, Ir) or remarkably limited to much lower temperatures (T = Rh). These compounds form a quasi-two-dimensional tetragonal structure with the CeIn₃ and TIn_2 layers alternating along the (001) direction. Hence one might expect that the AF correlations develop within the CeIn₃ layers while the interaction between the layers will be weaker as reported for CeRhIn₅, an incommensurate AF ($T_N = 3.8$ K) [6]. The remarkable agreement of the T_N values in the reported Ce₂PdIn₈ with the well-known CeIn₃ is not discussed in the Letter [1]. Neither the striking discrepancy between their own results on single crystals [1] and polycrystals (reported paramagnetic down to 0.35 K [7]) has been explained. The absence of SC in the polycrystalline sample is explained by an unconventional coupling sensitive to structural disorder, internal strains, and/or tiny changes in the composition, but the disagreement in the magnetic ground state is not discussed at all.

Although a detailed phase analysis (x-ray diffraction and microprobe) of the crystals was claimed to have been done [1], we would, however, still like to suggest that a CeIn₃ single crystal covered by a single-crystalline layer of Ce₂PdIn₈ was in fact that which was investigated. From the reported heat capacity data, we estimate the amount of CeIn₃ to be 15%–20%. In such case, a microprobe analysis of the sample's surface would not be able to detect it. Also, most of the diffraction peaks of both compounds interfere, because they have an almost equal lattice parameter a = 0.4693 nm [8] and a = 0.4689 nm [9] for Ce₂PdIn₈ and CeIn₃, respectively.

Our first magnetization data obtained on crystals grown analogously to [1] were in agreement with the Letter. A careful microprobe analysis, however, indicated a presence of CeIn₃, and element mapping showed that Ce₂PdIn₈ and CeIn₃ form a sandwichlike system with well-defined regions (see Fig. 1).

To confirm that the AF originates in CeIn₃, we have measured more than 5 different CeIn₃-free samples of Ce₂PdIn₈ by means of resistivity, heat capacity, and magnetic susceptibility; paramagnetic behavior with significant

FIG. 1 (color online). EDX element mapping of a typical polished sample. $CeIn_3$ (central region) is covered by a layer of Ce_2PdIn_8 (frame) and $Ce_{1.5}Pd_{1.5}In_7$ (thin stripe on the left).

magnetocrystalline anisotropy was observed down to a SC temperature [10].

The SC with $T_c = 0.7-0.45$ K (sample dependent) has been confirmed in our samples. The difference of critical temperature is probably given by structural planar defects, which were also observed in Ce₂RhIn₈ [11]. In agreement with [1], the SC has a HF character and it is a bulk property of the compound but it does not emerge out of a long-range AF state below the Néel temperature of 10 K because the reported AF was due to presence of an impurity phase.

K. Uhlířová,^{*} J. Prokleška, and V. Sechovský Charles University, DCMP Ke Karlovu 5, Praha 2, 121 16, Czech Republic

Received 24 August 2009; published 3 February 2010 DOI: 10.1103/PhysRevLett.104.059701 PACS numbers: 74.70.Tx, 74.25.F-, 74.62.Dh, 81.10.Dn

*klara@mag.mff.cuni.cz

- [1] D. Kaczorowski *et al.*, Phys. Rev. Lett. **103**, 027003 (2009).
- [2] J. M. Lawrence et al., Phys. Rev. B 22, 4379 (1980).
- [3] G.F. Chen et al., J. Phys. Soc. Jpn. 71, 2836 (2002).
- [4] J. S. Kim et al., Phys. Rev. B 69, 024402 (2004).
- [5] R. Movshovich et al., Phys. Rev. Lett. 86, 5152 (2001).
- [6] W. Bao *et al.*, Phys. Rev. B **62**, R14 621 (2000).
- [7] D. Kaczorowski *et al.*, Physica (Amsterdam) **404B**, 2975 (2009).
- [8] D.V. Shtepa *et al.*, Mosc. Univ. Chem. Bull. **63**, 162 (2008).
- [9] I.R. Harris et al., J. Less-Common Met. 9, 7 (1965).
- [10] K. Uhlířová *et al.*, Intermetallics (to be published).
- [11] E.G. Moshopoulou *et al.*, Acta Crystallogr. Sect. B **62**, 173 (2006).