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Dynamic light scattering was used to study the dynamic structure factor, Sðq; tÞ, of suspensions of

charged colloidal silica spheres over the full colloidal time range. We show that a dynamic scaling relation

for Sðq; tÞ found by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)] for hard spheres, relating long-time

and short-time dynamics, and collective and self-diffusion, also applies to charged colloids up to the

freezing concentration. The universality of this scaling is analyzed theoretically. Our experimental data

confirm dynamic freezing criteria proposed for the long-time self- and cage-diffusion coefficients, along

with a theoretical prediction for the self-diffusion coefficient.
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The dynamics in suspension of charged colloidal par-
ticles is of fundamental interest and the subject of ongoing
research [1–4]. A rich variety of charge-stabilized colloids
are encountered in chemical industry, biology, and food
science. While static properties of colloids resemble that of
atomic liquids, their dynamics is diffusive rather than
ballistic. This poses a challenging many-body problem
where both electrosteric and solvent-mediated hydro-
dynamic interactions (HIs) need to be considered.

Information on the dynamics of colloidal particles is
embodied in the dynamic structure factor, Sðq; tÞ, which
describes the dynamics of Fourier components of fluctua-
tions in number density as function of correlation time t
and wave number q. It can be determined by dynamic light
scattering (DLS) [1,5] and x-ray photon correlation spec-
troscopy (XPCS) [4]. From the knowledge of Sðq; tÞ, a
deeper insight can be obtained into transport properties
such as diffusion coefficients, viscoelastic quantities [6],
and crystallization lines [7]. Short-time properties of
charged colloids are now rather well understood thanks
to detailed scattering experiments [8] and simulations [9].
In contrast to this, a lot remains to be learned about long-
time dynamics.

A comprehensive study on the dynamics of suspensions
of neutral hard spheres was made by Segrè and Pusey using
two-color DLS [10]. They measured the Sðq; tÞ of hard
spheres in the whole fluid concentration regime. The key
finding of their study is that the normalized dynamic
structure factor, fðq; tÞ ¼ Sðq; tÞ=SðqÞ, of hard spheres of
radius a is well approximated for q > 2:5=a including the
principal peak of SðqÞ, by the scaling relation [10]

fðq; tÞ � exp

�
�q2

DSðqÞ
dS

WðtÞ
�
: (1)

Here WðtÞ ¼ h�r2ðtÞi=6 is the mean-square displacement
of a particle with initial and long-time slopes equal to,
respectively, the short- and long-time self-diffusion coef-
ficients dS and dL. Furthermore, DSðqÞ ¼ d0HðqÞ=SðqÞ is
the short-time diffusion function proportional to the hydro-
dynamic function, HðqÞ, which reflects the influence of

HIs. The single-particle diffusion coefficient is d0. The
Segrè-Pusey factorization suggests that density relaxations
at nonsmall wave numbers are controlled by self-diffusion.
Equation (1) assumes that the q and t dependence of

logfðq; tÞ can be factorized. It reproduces the small- and
large-q behavior of fðq; tÞ, i.e., fðq � qm; tÞ �
expf�q2DSðqÞtg and fðq � qm; tÞ / expf�q2WðtÞg.
Here, qm � 3:5=a is the principal peak position of the
hard sphere SðqÞ. The large-q form is valid for negligible
non-Gaussian corrections. Measuring fðq; tÞ for q > 2:5=a
should give a q-independent master curve equal to
WðtÞ=dSt, when � lnfðq; tÞ=½q2DSðqÞt� is plotted versus
t. Moreover, a single-exponential decay, fðq; tÞ /
expf�q2DLðqÞtg, is predicted for long times and q >
2:5=a, with a long-time diffusion function

DLðqÞ
DSðqÞ

� dL
dS

(2)

of the same q dependence as DSðqÞ and ratio dL=dS. Note
thatDLðq ! 1Þ ¼ dL sinceDSðq ! 1Þ ¼ dS. An empiri-
cal rule for the onset of freezing by Löwen et al. [7] states
that dL=dS � 0:1. Thus theDLðqÞ of a concentrated system
is substantially smaller than its short-time counterpart.
The key question is whether Eqs. (1) and (2) are generic

features of colloidal dispersions, not restricted to the neu-
tral hard spheres studied by Segrè and Pusey. A recent
study has challenged the validity of Eq. (2) even for the
restricted class of hard-sphere-like systems: using XPCS
and small-angle x-ray scattering (SAXS), Lurio et al. [11]
measured the diffusion of charged polystyrene latex
spheres in glycerol. The SðqÞ in their system is indistin-
guishable from that of hard spheres, but DLðqÞ=DSðqÞ was
found to vary strongly in q at higher volume fractions�, in
conflict with Eq. (2). Lurio et al. argue that the violation of
Eq. (2) may be due to a different hydrodynamic boundary
condition on the surface of a charged latex sphere and a
sterically stabilized neutral sphere.
In this Letter, we describe DLS experiments on fluid-

ordered charge-stabilized trimethoxysilypropyl methacry-
late (TPM) coated silica spheres [12], in an index-matching
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80:20 toluene-ethanol mixture at T ¼ 20 �C. The radius
determined by SAXS is a ¼ 136 nm, with size polydis-
persity of 0.06. The residual salinity is below 1 �M. Our
precision measurements of Sðq; tÞ cover the full colloidal
time regime and a broad q range, with � extending up to
the freezing transition value �f � 0:16, where SðqmÞ �
3:2. The DLS measurements were made using a setup by
the ALV-Laservertriebsgesellschaft (Langen, Germany).
The intensity autocorrelation function, g2ðq; tÞ, was re-
corded by an ALV-5000 multitau digital correlator, and
the electric field autocorrelation function, g1ðq; tÞ /
Sðq; tÞ, was determined from g2ðq; tÞ using the Siegert
relation. We checked that there is no noticeable multiple
scattering.

We will show that our results for DSðqÞ and dS deduced
from Sðq; tÞ are in good agreement with theoretical pre-
dictions for low-salt systems of strongly charged particles
[9,13]. Moreover, our data at the crystallization point con-
firm two dynamic criteria for the freezing values of dL=dS
[7] and the long-time cage-diffusion coefficient, DLðqmÞ
[13]. The latter quantifies the decay of density relaxations
of wavelength 2�=qm. Most importantly, our data show
that factorization scaling also applies approximately to
charge-stabilized suspensions for � up to the freezing
value. We provide theoretical arguments supporting the
applicability of factorization scaling for arbitrary pair po-
tentials, but we also point to its approximate nature.

Figure 1 shows DLS data for the g2ðq; tÞ of TPM coated
silica spheres at qm and for � up to �f. The inset displays

lnfðq; tÞ versus q2t for � ¼ 0:14 and q including the peak
position value where SðqmÞ � 2:9. The experimental SðqÞ
is shown in the inset of Fig. 2, together with the SðqÞ
calculated using the penetrating background rescaled
mean spherical approximation (PBRMSA) scheme [14].
This analytic scheme provides accurate SðqÞ [15]. The only
adjustable parameter in this scheme is the effective par-
ticle charge in the Derjaguin-Landau-Verwey-Overbeek
(DLVO) screened Coulomb potential, determined as 175e
from fitting the experimental peak height. The good
agreement between calculated and experimental SðqÞ holds
for all investigated �. According to Fig. 1, fðq; tÞ and
g2ðq; tÞ decay initially exponentially, followed by a non-
exponential decay at intermediate times and an approxi-
mately exponential slower decay at long times. Similar
to the neutral-sphere systems studied earlier [10,16], we
have deduced DLðqÞ from these data. The inverse
of DLðqÞ in Fig. 2 is compared with the inverse of DSðqÞ
plotted on a different vertical scale. In accord with Eq. (2),
DLðqÞ and DSðqÞ share practically the same q dependence,
with ratio DLðqÞ=DSðqÞ � 0:23 at � ¼ 0:14. This super-
positioning is valid for � up to �f. The solid curve in

Fig. 2 is the prediction for DSðqÞ by the �� scheme of
Beenakker and Mazur [17] using the PBRMSA SðqÞ as
input. The agreement with the experiment illustrates the
accuracy of this scheme in predicting the HðqÞ of charged
systems [8,9].

To test Eq. (1) for its time dependence, in Fig. 3 we plot
� lnfðq; tÞ=½q2DSðqÞt� versus t for the same q’s as in the
inset of Fig. 1. To decent accuracy, the data collapse on a
master curve for q > 0:8qm. According to Eq. (1), this
curve should be identified as WðtÞ=ðdStÞ with long-time
asymptote dL=dS. The long-time regime is reached for t >
33 ms, giving dL=dSð� ¼ 0:14Þ � 0:23.
A discussion is in order here on the validity of the

factorization scaling and the existence of the exponential
long-time mode in fðq; tÞ as its necessary prerequisite. The
occurrence of a long-time mode and its q dependence were
explored theoretically by Cichocki and Felderhof [18,19]
for dilute to moderately dense hard-sphere systems without
HIs. They analyzed the spectral distribution, pqð�Þ � 0, of

relaxation rates �,

FIG. 1 (color). Scattering function g2ðq; tÞ versus time t for
TPM coated silica spheres in a toluene-ethanol mixture mea-
sured at q ¼ qmð�Þ for � values as indicated. Inset: fðq; tÞ
versus q2t for � ¼ 0:14 at q values as indicated.

FIG. 2 (color). DLS results for the normalized inverse short-
time diffusion function d0=DSðqÞ (j, scale on left axis) and
inverse long-time diffusion function d0=DLðqÞ (h, scale on right
axis) of TPM coated silica spheres at � ¼ 0:14. Inset: static
structure factor. Lines: theoretical predictions for d0=DSðqÞ by
�� scheme with PBRMSA input for SðqÞ.
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fðq; tÞ ¼
Z 1

0
d�pqð�Þ expf��tg; (3)

characterizing the strictly monotonous decay of fðq; tÞ.
Using a contact Enskog approximation (CEA) exact to first
order in �, they showed that for SðqÞ sufficiently large at
the considered q, the long-time decay of fðq; tÞ is domi-
nated indeed by an exponential mode arising from a delta
peak contribution to pqð�Þ, in a low � gap, where the

continuous part of pqð�Þ is zero [18,19]. The associated

DLðqÞ relates to the center of mass diffusion of a pair of
particles. At a q different from qm where SðqÞ is small, e.g.,
at the first minimum in SðqÞ to the right of qm, the delta
peak can mold with the continuous spectral part, but still a
pronounced peak in pqð�Þ may remain. If sufficiently

strong, this peak describes approximately a long-time
mode. Quite interestingly, DLðqÞ=DSðqÞ obtained in CEA
using DSðqÞ ¼ d0=SðqÞ for zero HIs varies significantly
with q [19].

The feature of an approximate long-time mode for hard
spheres without HIs, observed for � � 0:2 [20], should
survive when particles with soft interactions, and many-
body correlations not accounted for in CEA, are consid-
ered. Indeed, mode coupling theory (MCT) without HIs
predicts a long-time mode both for charged spheres with
strong electrostatic interactions and dense hard-sphere sys-
tems [20]. No sharp long-time mode occurs when the
system is weakly structured or when SðqÞ at the considered
q is small.

We expect that HIs cause no qualitative changes. How-
ever, earlier findings for neutral spheres and our data for
charged silica spheres suggest that HIs tend to smooth out
the q variations in DLðqÞ=DSðqÞ present otherwise. The
existence of a long-time mode with DLðqÞ / DSðqÞ does
not necessarily imply validity of the q-t factorization in
lnfðq; tÞ. To check the validity of Eq. (1) for a dense hard-
sphere system, we performed MCT calculations of WðtÞ
and fðq; tÞ, each shown to be in good agreement with

Brownian dynamics simulations [15]. According to MCT,
the t dependence in Eq. (1) is only approximate, especially
at intermediate times. There is no reason for Eq. (1) to be
exact with HIs.
Since the self-intermediate scattering function, Gðq; tÞ,

related to self-diffusion is not measurable by DLS, we use
an approximate procedure by Pusey to extract dS and dL
directly from Sðq; tÞ [21], at a wave number q� > qm (see
inset of Fig. 2) where the distinct structure factor, SdðqÞ ¼
SðqÞ � 1, is zero. On assuming that the time-dependent
generalization, Sdðq�; tÞ ¼ Sðq�; tÞ �Gðq�; tÞ, remains
small as compared to Gðq�; tÞ, it follows Sðq�; tÞ �
Gðq�; tÞ, and consequently Sðq�; tÞ � expf�ðq�Þ2WðtÞg
when non-Gaussian contributions are ignored. This identi-
fies dS with DSðq�Þ. Simulations of neutral and charged
spheres [9] show that dS is determined by this procedure to
within 5%–10%. A similar accuracy can be expected for
dL. This is supported by MCT results for charged particles
where we compare � lnSðq�; tÞ=ðq�Þ2 to WðtÞ, observing
an agreement within 10% deviations at intermediate times.
Our experimental data confirm the theoretical prediction,

ds=d0 ¼ 1–2:5�4=3 [9,20], for all considered �. The �4=3

dependence is characteristic of charged particles at low

salinity where qm / �1=3.
The dL and ds decrease in general monotonically with

increasing�, to an extent depending on parameters such as
salinity and Z. To discuss their generic behavior, our data
for dL=d0, DLðqmÞ=d0, and DLðqmÞ=DSðqmÞ � dL=ds are
plotted in Fig. 4 versus SðqmÞ and compared to theoretical
predictions. SðqmÞ quantifies the strength of static correla-
tions. The MCT curve for the ratio, dL=dS, of hard spheres
has been corrected for HIs by a short-time hydrodynamic
rescaling procedure [2,20], describing experimental data
very well [13]. At freezing where Sðqm;�f ¼ 0:494Þ ¼
2:85 for hard spheres, dL=dS � 0:1 is in accord with
Löwen’s criterion. Short-time rescaling works well for
neutral spheres [2], but not for low-salinity systems of
charged particles, where opposite to hard spheres long-
time diffusion is enhanced [3,13,22].
The MCT curve for dL=dS of charged spheres was

obtained without HIs. It matches rather closely the dL=dS
curve for hard spheres, giving dL=d0 � 0:1 at SðqmÞ ¼
2:85, and dL=d0 � 0:06 at the experimental value SðqmÞ ¼
3:2 where the silica system freezes. The freezing value for
SðqmÞ varies from 2.85 for hard spheres to about 3.1–3.3 for
low-salt suspensions [23,24]. From the silica system data,
we note dL=dS � DLðqmÞ=DSðqmÞ � 0:12 at freezing, in
decent agreement with Löwen’s criterion. Another remark-
able finding is that the experimental freezing value,
DLðqmÞ=d0 � 0:05, is close to the value 0.06 predicted
by MCT at the peak height where hard spheres freeze. At
the experimental peak height of the silica system at freez-
ing, MCT predicts DLðqmÞ=d0 � 0:03.
As shown in [13,20], a universal 1:1 relation between

dL=d0 and SðqmÞ, and a corresponding relation between
DLðqmÞ=d0 and SðqmÞ, should apply approximately to all

[
]

]
[

[
]

]
[

FIG. 3 (color). Same data as in the inset of Fig. 1, plotted here
as� ln½fðq; tÞ�=½q2DSðqÞt�. Inset: ln½fðq; tÞ�=½q2DSðqÞ� versus t.
Scaling is found for q=qm � 0:8.
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low-salt systems characterized by a single length scale

rm � ��1=3 / 1=qm, where � is the particle number den-
sity. With HIs, radius a comes into play as a second length
so that dL=d0 and DLðqmÞ=d0 become moderately depen-
dent on rm=a [13]. Inclusion of HIs moves the theoretical
curves for dL=d0 and DLðqmÞ=d0 closer to the experimen-
tal values, which otherwise are larger roughly by a factor of
2. The reason for the upward shift is that, according to
theory and simulations [3,13,22], dL is enlarged by the far-
field part of the HIs dominating in low-salinity systems by
a factor of 1.15–1.35. Since DLðqmÞ 	 dL, a similarly
pronounced hydrodynamic enforcement can be expected
for DLðqmÞ, but there are to date no simulation results to
corroborate this. According to our experiments, dS of low-

salt systems is smaller than d0 by a factor of 1–2:5�
4=3, so

that dL is further upshifted when normalized by dS in lieu
of d0. One should not expect quantitative agreement with
experimental data even after inclusion of HIs. MCT is an
approximate approach after all, becoming less accurate for
less strongly structured systems.

In summary, we have shown that factorization scaling of
fðq; tÞ, with q-independent ratio DLðqÞ=DSðqÞ for q >
0:8qm, also applies to charge-stabilized suspensions. This
approximate feature should be observable, to a varying
degree of accuracy, in any suspension of rigid spherical
particles, provided these are correlated sufficiently
strongly. Our data confirm theoretical predictions for the
freezing values of dL=dS andDLðqmÞ, the� dependence of
dS, and the q dependence of DSðqÞ. We expect dynamic
scaling to apply approximately even for soft spherical
particles such as microgel spheres [25] and core-shell
particles [26], where dynamic differences to rigid particles

arise mainly from solvent permeability and correspond-
ingly weakened HIs. A strong interplay of intra- and inter-
particle dynamics can be expected for very soft and flexible
particles such as soft giant micelles [27], which might
severely affect dynamic scaling. Exploring this interplay
requires more theoretical and experimental work.
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[3] W. Härtl et al., J. Phys. Condens. Matter 12, A287 (2000).
[4] A. J. Banchio et al., Phys. Rev. Lett. 96, 138303 (2006).
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FIG. 4 (color). Long-time cage-diffusion coefficient DLðqmÞ=
d0 and self-diffusion coefficient dL=d0, and self-diffusion ratio
dL=dS versus SðqmÞ. Filled symbols: experimental data for
charged silica spheres. Lines: MCT prediction for charged
spheres (CS) without HIs (denoted by MCT) and HI-corrected
MCT predictions for hard spheres (HS) denoted by MCT HIs.
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