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We report an electron transport study of lithographically fabricated graphene nanoribbons (GNRs) of

various widths and lengths. At the charge neutrality point, a length-independent transport gap forms

whose size is inversely proportional to the GNR width. In this gap, electrons are localized, and charge

transport exhibits a transition between thermally activated behavior at higher temperatures and variable

range hopping at lower temperatures. By varying the geometric capacitance, we find that charging effects

constitute a significant portion of the activation energy.
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In recent years graphene has been celebrated for its
potential as a new electronic material [1,2]. However, the
absence of an energy band gap in graphene poses a chal-
lenge for conventional semiconductor device operations.
Previous work [3–5] has shown that this hurdle can be
overcome by patterning graphene into nanometer size
ribbons or constrictions. The resulting transport gap for-
mation can be most simply attributed to quasi-one-
dimensional (1D) confinement of the carriers, which in-
duces an energy gap in the single particle spectrum [6].
Detailed experimental studies of disordered graphene
nanoribbons (GNRs) [7–12], however, suggest that this
observed transport gap may not be a simple band gap. In
an effort to explain these experimental results, various
theoretical explanations for the transport gap formation
in disordered graphene nanostructures have been proposed,
including models based on Coulomb blockade in a series of
quantum dots [13], Anderson localization due to edge
disorder [14–19], and a percolation driven metal-insulator
transition [20]. In order to distinguish between these differ-
ent scenarios, systematic experiment including treatment
of both disorder induced localization and electron-electron
interaction is required.

In this Letter, we study the scaling of the transport gap in
GNRs of various dimensions. From the scaling of several
characteristic energies with GNR width (W) and length
(L), we find evidence of a transport mechanism in disor-
dered GNRs based on hopping through localized states
whose size is close to the GNR width.

GNRs were fabricated following the procedures
described in [3]. Most experiments in this report were
performed on back-gated GNRs on a substrate of highly
doped silicon with a 285 nm thick SiO2 gate dielectric. An
example of such a device is shown in the inset to Fig. 1(a).
We measured electron transport in a total of 41 GNRs with
20<W < 120 nm and 0:5< L< 2 �m. Additionally, we
fabricated top-gated GNRs with 15 nm of hydrogen silses-
quioxane (HSQ) and 10 nm of HfO2 as the gate dielectric
material for a comparative study.

GNR conductance is strongly suppressed for a region of
back gate voltages Vg near the graphene charge neutrality

point [3,4,8–12], suggesting the formation of a transport
gap. Figure 1(a) shows low bias differential conductance
G ¼ dI=dV as a function of Vg for a typical GNR. The

transport gap region as measured in back gate voltage,
�Vg, can be identified in this curve by extrapolating the

FIG. 1 (color online). (a) dI=dV of a GNR with W ¼ 36 nm
and L ¼ 500 nm, plotted as a function of Vg. Dashed lines

highlight measurement of �Vg. Right inset shows an atomic

force microscope image of the device. Left inset shows a close-
up of dI=dV within the gap regime plotted as a function of Vg �
VD, where VD ¼ 21 V is the gate voltage for the charge neutral-
ity point. (b) T dependence of the minimum conductance of the
same GNR in (a). The dashed and dotted lines are a fit to simple
activated behavior and variable range hopping with � ¼ 1=2,
respectively. An arrow highlights the position of T�. Inset shows
dI=dVðVgÞ at several temperatures.
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smoothed dG=dVg to zero [8,12]. We note that reproduc-

ible conductance peaks appear in the gap region [8,9,12]
[left inset Fig. 1(a)], which are indicative of resonant
conduction paths through localized states inside the trans-
port gap. In general, resonance peaks in the gap are less
than 10% of the G values outside of the gap region.

The observed transport gap, �Vg corresponds to an

energy in the single particle energy spectrum: �m ¼
@vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Cg�Vg=jej
q

, where vF ¼ 106 m= sec is the Fermi

velocity of graphene [21] and Cg is the capacitive coupling

of the GNR to the back gate. This geometric capacitance is
strongly dependent on ribbon dimensions and we calculate
it using a finite element model, obtaining, for example,
Cg ¼ 690 aF=�m2 and �m ¼ 200 meV for the particular

device in Fig. 1.
Away from the small resonant conductance peaks, the

conductance is strongly suppressed in the transport gap,
and the dominant charge transport can be described by
thermally excited hopping between localized states. We
study the thermal activation of the off-resonant conduction
in this regime by measuring Gmin, the minimum conduc-
tance for a given sweep of gate voltage Vg, at different

temperatures [inset to Fig. 1(b)]. Figure 1(b) shows an
Arrhenius plot for GminðTÞ. Evidently, thermally excited
transport exhibits two distinct behaviors at low and high
temperature regimes, respectively, separated by a charac-
teristic temperature T�. At high temperatures (T > T�), the
transport is simply activated: Gmin � expð�Ea=2kBTÞ,
where Ea ¼ 285 K is obtained from a linear fit of the
Arrhenius plot (dashed line). At lower temperatures (T <
T�), however, Gmin deviates from the simple activation
behavior and decreases more slowly with decreasing tem-
perature than the activated transport would imply. In this
low temperature regime, the overall behavior is consis-
tent with variable range hopping (VRH), where G�
expð�ðT0=TÞ�Þ, with � ¼ 1=2 and a constant T0, deter-
mined by the characteristics of the localized states [22].

The aforementioned GNR transport gap and temperature
dependent characteristics are typical of all GNRs with
W & 80 nm, so that �m, Ea, and kBT

� can be determined
for each of these narrow GNRs. These three representative
energy scales are plotted as a function ofW in Fig. 2. In this
graph, we note that (i) there is a clear separation between
these energy scales, setting a general relation �m > Ea >
kBT

� for given W, (ii) �m, Ea, and T� depend sensitively
on W but not L, and (iii) the energy scales are reasonably
well described by inverse proportion to the lateral confine-
ment of the GNR. The length independence can be noticed
by comparing characteristic energies of the GNRs with
similarW but different L (represented by different symbols
in Fig. 2), and suggests that these three energy scales are
1D intensive properties of GNRs. To show this, we define
the normalized width w ¼ ðW �W0Þ=a0, where a0 ¼
0:142 nm is the carbon-carbon bond length and W0 is an

offset introduced phenomenologically. Then, we find that
all energy scales can be reasonably fit (dotted lines): �m ¼
�0

m=w; Ea ¼ E0
a=w; T

� ¼ T�
0=w with the proportionality

parameters �0
m ¼ 36:3 eV, E0

a ¼ 3:39 eV, and kBT
�
0 ¼

347 meV, respectively, with W0 ¼ 12 nm held fixed for
all three fits [23].
Edge disorder in the GNRs tends to induce wave func-

tion localization, with a localization length that decreases
rapidly with decreasing energy, resulting in a transport gap
with strongly localized states at energies between the
mobility edges [14]. The size of this mobility gap is larger
than the clean band gap of an ideal ribbon; Querlioz et. al.
calculate the scaling prefactor �0

m � 32:2 eV, averaged
over many configurations of edge disorder [17]. The close
match of our data to theoretical prediction supports the
view that atomic defects at the graphene edges create
localized states. We point out, however, that the observed
energy scales lie within the range of the disorder potential
fluctuation created by charged impurities in the SiO2 sub-
strate [20], making it difficult to exclude the contribution
of a substrate disorder induced transport gap, as discussed
in a recent experiment on transport in thermally annealed
GNRs [12].
On the other hand, E0

a=�
0
m � 0:1; i.e., the activation

energy at higher temperatures is an order of magnitude
smaller than �m. This observation excludes the scenario
that extended states carry current via thermal activation
across the transport gap. Instead, we interpret the simply
activated behavior as a signature of 1D nearest neighbor
hopping (NNH) through localized states within the trans-
port gap [19]. In this picture, disorder at the edges tends to
produce a rapid variation in the local density of states over
the whole width of the ribbon, blocking the conductive
paths and leading to a quasi-1D arrangement of localized

W

∆

FIG. 2 (color online). GNR transport energy scales: �m

(solid), Ea (crosshatched), and kBT
� (open) plotted as a function

of GNR width. Circles, triangles, squares, and stars correspond
to ribbons of L ¼ 0:5, 1, 1.5, and 2 �m, respectively. The
dashed lines are the fits described in the text.

PRL 104, 056801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 FEBRUARY 2010

056801-2



states [16]. Martin and Blanter predict [19] that the energy
spacing between nearest neighbor states is determined by
�t0=w, where t0 � 0:2t is the hopping matrix element
between second nearest neighbor carbon atoms in gra-
phene, so that E0

a � 2t0 ¼ 1:2 eV. Our measured value
for this scaling prefactor, 3.39 eV, is somewhat larger
than this prediction, which may be explained by the con-
tribution of a charging energy to the hopping energy Ea,
discussed in more detail below.

The change of the transport behavior across the tem-
perature T� allows a further comparison of our data to
theory. In a very recent theoretical work, the NNH and
VRH crossover is calculated to occur at T� ¼ Ea=kB�,
where � � 8 was estimated numerically [24]. In our ex-
periment, we obtain E0

a=kBT
�
0 ¼ 9:8, reasonably consistent

with this theoretical prediction, lending further support to a
model of charge transport via thermally activated hopping
between localized states.

An alternative approach to probing the GNR transport
gap is measurement of the nonlinear transport character-
istics [3]. Figure 3(a) shows differential conductance,
dI=dVb as a function of Vg and source-drain bias voltage

Vb. Transport through the GNR at finite Vb shows a strong
nonlinear I � Vb characteristic when EF is in the transport
gap regime, which is most extreme when Vg is near the

charge neutrality point of the GNR [Fig. 3(b), black curve].

The nonlinear gap �Vb can be defined where a steep in-
crease of current appears in logarithmic scale [Fig. 3(b),
green (dark gray) curve].
In our previous study [3], the energy corresponding to

e�Vb was interpreted to be the band gap of the GNR.
However, this naive interpretation should be carefully re-
considered for edge disordered GNRs, where the charge
transport is dominated by hopping through localized states.
Indeed, from the plot of �Vb vs W [Fig. 3(c)], we notice
that�Vb depends strongly on L, and is not well determined
byW alone, unlike the previous three characteristic energy
scales (�m, Ea, and kBT

�). Since the charge transport in the
disordered GNRs is diffusive, it is likely that electric field
is driving transport in the transport gap. Indeed, if we
convert �Vb into the corresponding critical electric field
Ecr ¼ �Vb=L, we restore a reasonable scaling behavior,
where Ecr depends only on W and not on L [Fig. 3(d)].
In disordered systems in which transport is dominated

by hopping through localized states, applied electric field E
plays a similar role to temperature. Thus we can treat the
electric field as an effective temperature: kBTeff ¼ eELc,
where Lc is the averaging hopping length between local-
ized states [25]. Noting that the transition from NNH
dominated transport to VRH transport occurs at T�, we
relate T� to the transition occurring at Ecr and estimate
Lc � kBT

�=eEcr. For most GNRs in this experiment we
find that W & Lc < 2W [Fig. 3(d) inset]. The fact that
Lc * W supports our claim that hopping transport through
the ribbons is effectively 1D.We note that this Lc is distinct
from the wave function localization length, which should
be smaller than Lc and is expected to be comparable to W
[26,27].

FIG. 3 (color online). (a) Differential conductance as a func-
tion of Vg and Vb measured in a GNR with L ¼ 1 �m and

W ¼ 31 nm.(b) Current as a function of Vb with Vg fixed in the

off-resonant condition marked by the dotted line in (a). �Vb is
highlighted by the vertical dashed lines. (c) �Vb as a function of
W. Symbols follow the convention set in Fig. 2. (d) The critical
electric field Ecr versus W converted from the data set in (c).

I II

FIG. 4 (color online). Temperature dependence of the conduc-
tance minimum for dual gated (circles) and back gated (tri-
angles) GNRs with the similar W and L. The dashed lines are
Arrhenius fits in the high temperature regime. The inset shows
SEM images of back gated (left) and dual gated (right) devices.
Scale bar represents 500 nm.
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Finally, we discuss the effect of Coulomb charging in
GNRs. Several previous works have discussed the role of
Coulomb blockade and charging effects on the transport
gap in GNRs and graphene constrictions [8,12,13]. In
principle, in a GNR with hopping between localized states,
we expect Coulomb interactions to open a soft Coulomb
gap near the Fermi surface, which can be incorporated into
the total hopping energy Ea in addition to the single
particle energy level spacing t0=w, so that Ea � t0=wþ
Ec, where Ec is the Coulomb charging energy [19,28,29].
In order to quantify the contribution of charging energy Ec

to the hopping energy Ea, we perform a comparative
transport measurement on GNRs with different gate cou-
pling. Figure 4 shows the temperature dependent minimum
conductance GminðTÞ for a back gate only GNR (device I)
and a GNR with both top and back gates (device II) with
similar W and L. While device I has the usual capacitive
coupling to the back gate, (i.e.,CI � Cg), device II is much

closer to the top gate, leading to a larger capacitance:
CII=CI � 4. From the thermally activated Arrhenius be-
havior in the high temperature regime (dashed lines), we
obtain the activation energies of the two devices, EI

a ¼
15 meV and EII

a ¼ 8:4 meV averaged over two devices of
type I and four of type II. Considering the reduced charging
energy contribution in the dual gated device, smaller values
of the activation energy are indeed expected, if Coulomb
effects are appreciable in the GNR.

Employing the ratio EII
a =E

I
a � 0:5, we now can estimate

the charging energy contribution quantitatively. Assuming
that the single particle energy level spacing t0=w is similar
for both GNRs due to their similar dimensions, we obtain
EII
a � EII

c ¼ EI
a � EI

c ¼ t0=w, where the charging energy
ratio of device I and II are given by EI

c=E
II
c ¼ CII=CI � 4.

The resulting estimate for the charging energy contribu-
tion, EI

c=E
I
a � 0:6, indicates that the Coulomb charging

effect provides a substantial portion of the activation
energy.

In conclusion, we study length and width dependent
resistance scaling in GNRs. Temperature and electric field
dependent transport characteristics indicate that charge
transport in the transport gap of disordered GNRs is domi-
nated by localized states, where the Coulomb charging
effects play an important role.
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