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Zero-energy Majorana bound states in superconductors have been proposed to be potential building

blocks of a topological quantum computer, because quantum information can be encoded nonlocally in the

fermion occupation of a pair of spatially separated Majorana bound states. However, despite intensive

efforts, nonlocal signatures of Majorana bound states have not been found in charge transport. In this

work, we predict a striking nonlocal phase-coherent electron transfer process by virtue of tunneling in and

out of a pair of Majorana bound states. This teleportation phenomenon only exists in a mesoscopic

superconductor because of an all-important but previously overlooked charging energy. We propose an

experimental setup to detect this phenomenon in a superconductor–quantum-spin-Hall-insulator–-

magnetic-insulator hybrid system.
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Majorana bound states are localized zero-energy excita-
tions of a superconductor [1,2]. An isolated Majorana
bound state is an equal superposition of electron and hole
excitations and therefore not a fermionic state. Instead, two
spatially separated Majorana bound states together make
one zero-energy fermion level [1,3] which can be either
occupied or empty. This defines a two-level system which
can store quantum information nonlocally, as needed to
realize topological quantum computation [4,5]. While sev-
eral schemes have been recently proposed to detect the
existence of individual Majorana bound states [6–12],
experimental signatures of the nonlocal fermion occupa-
tion of these states remain to be found.

In this work, we predict a nonlocal electron transfer
process due to Majorana bound states in a mesosopic
superconductor: an electron which is injected into one
Majorana bound state can go out from another one far
apart maintaining phase coherence. Strikingly, the trans-
mission phase shift is independent of the distance ‘‘trav-
eled.’’ In such a sense, we call this phenomenon ‘‘electron
teleportation.’’ It occurs because of the nonlocal fer-
mion occupation of Majorana bound states and the finite
charging energy of a mesoscopic superconductor. The
all-important role of charging energy in the study of
Majorana fermions has not been recognized before. We
propose a realistic scheme to detect the teleportation
phenomena in a superconductor–quantum-spin-Hall-
insulator–magnetic-insulator hybrid system, which have
been recently shown to host Majorana bound states
[13,14].

In a macroscopic s-wave superconductor, charge e ex-
citations have a pairing energy gap, whereas charge 2e
excitations cost zero energy. Therefore the ground state
manifold consists of states with an even number of elec-
trons only, as shown in Fig. 1(a). The BCS wave function
of the ground state with a definite overall superconducting
phase � 2 ½0; 2�� is a linear superposition of states with

2N electrons. Now consider that a pair of zero-energy
Majorana bound states are present at positions R1 and R2

in the superconductor, and all other quasiparticle excita-
tions have a finite gap greater than an energy scale �. We
shall show later how this situation can be realized in a
device consisting of an s-wave superconductor and the
recently discovered quantum spin Hall (QSH) insulator
HgTe quantum well [15,16]. The two Majorana operators
�1 and �2 are defined by

�1;2 �
Z

dxe�i�=2�1;2ðxÞcyðxÞ þ ei�=2��
1;2ðxÞcðxÞ: (1)

Here �1;2ðxÞ are bound state wave functions centered at

R1;2. We assume that the distance between the two

Majorana bound states is much larger than the coherence
length—a necessary condition for the notion of nonlocality
to be meaningful. A single fermionic operator can then be
defined dy � ð�1 þ i�2Þ=2, which accommodates an extra
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FIG. 1 (color online). Energy spectrum of a superconductor as
a function of total number of electrons. States with an even and
an odd number of electrons are marked in black and red (gray),
respectively. Panels (a) and (b) correspond to superconductors
without and with a pair of zero-energy Majorana bound states.
Figures on the left and right correspond to superconductors
without and with charging energy.
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fermion excitation without any energy cost. Now the
ground states of the superconductor have two sectors jei
and joi defined by djei ¼ 0, joi ¼ dyjei, which have an
even and odd number of electrons, respectively, as shown
in Fig. 1(b),

je;�i ¼ X
n¼2N

ane
i�Nj2Ni;

jo;�i ¼ X
n¼2Nþ1

ane
i�ðNþ1=2Þj2N þ 1i;

(2)

where an is real and slowly varying at large n. Equation (2)
says that the fermion occupation of the d level (empty or
occupied) dyd ¼ ði�1�2 þ 1Þ=2 is fixed by the total num-
ber of electrons in the superconductor mod 2:

i�1�2 ¼ ð�1Þn: (3)

Equation (3) imposes constraint on the Hilbert space.
Equivalently, Eq. (3) implements a gauge transformation
�j ! ��j, � ! �þ 2�, which is a gauge symmetry in

the definition of Majorana operators Eq. (1).
If the superconductor under consideration is of meso-

scopic size and connected to ground by a capacitor, the
energy spectrum has an additional term due to the finite
charging energy:

UcðnÞ ¼ ðne�Q0Þ2=2C; n ¼ 0;�1;�2; . . . ; (4)

whereQ0 is the gate charge determined by the gate voltage
Vg across the capacitor. As a result, states with different n

are no longer degenerate. In this work we will consider the
regime U � e2=C < �, which can always be satisfied by
increasing the size of the superconductor. The low-energy
spectrum (E<U) then depends crucially on whether
Majorana bound states are absent or present. In the former,
only states with an even number of electrons are accessible
at low energy, which leads to an even-odd effect in tunnel-
ing experiments on mesoscopic superconductors [17]. In
contrast, if Majorana bound states are present, both even
and odd states appear on equal footing in the low-energy
spectrum. In this case, when Q0=e is adjusted to half-
integers, an energy-level degeneracy can be achieved be-
tween two states that differ by charge e instead of 2e as in a
usual superconductor with Coulomb blockade. This two-
level system shown in Fig. 1 is the main subject of our
study.

We nowweakly couple the twoMajorana bound states to
separate normal metal leads. This can be realized in an
s-wave superconductor–quantum-spin-Hall-insulator–-
magnetic-insulator hybrid system. The QSH insulator
used here is a new phase of two-dimensional insulators
which have robust edge states [18]. It has been experimen-
tally realized in HgTe quantum wells [15]. The device
geometry is shown in Fig. 2: an s-wave superconductor
and a magnet are deposited on top of the QSH insulator.
Both superconducting proximity effect and Zeeman field
of the magnet open up a finite quasiparticle gap for the
QSH edge states. However, two zero-energy Majorana

bound states �1;2 exist at the intersection of the

superconductor-magnet interface with the top and bottom
edge, respectively [14], conceptually similar to the states
localized at the ends of a one-dimensional spinless p-wave
superconductor [19]. The edge states in the uncovered part
of the quantum spin Hall insulator are naturally used as
leads to connect �1 and �2 to source and drain.
To describe electron tunneling between the lead and the

superconductor, we write the electron operator in terms of
quasiparticle operators of the superconductor

cðxÞ ¼ e�i�=2½�1ðxÞ�1 þ �2ðxÞ�2 þ � � ��: (5)

Since wewill only consider small bias voltage V <U <�,
only zero-energy Majorana operators are important and
contributions from other quasiparticle states can be ne-
glected in (5). We now write down the Hamiltonian for

the system in Fig. 2: H ¼ HL þUc þHT , where HL ¼P
k;j¼1;2�jðkÞcyj;kcj;k describes the two leads, Uc is the

charging energy defined in (4). The effective tunneling
Hamiltonian HT at low energy is given by substituting

(5) into the bare tunneling term tic
y
i c:

HT ¼ X
j¼1;2

½�jc
y
j �je

�i�=2 þ ��
j�jcje

i�=2�: (6)

Here cj annihilates an electron in lead j and �j / �jðRjÞ is
the tunneling matrix element. As we emphasized earlier,
�1ðxÞ and �2ðxÞ have essentially zero wave function over-
lap so that no coupling between c1ðc2Þ and �2ð�1Þ exists.
The operator e�i�=2 in HT increases or decreases the total
charge of the superconductor by one charge unit

½n; e�i�=2� ¼ �e�i�=2, and the Majorana operator �1;2

changes the parity of electron number in the superconduc-
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FIG. 2 (color online). The device used to study electron tun-
neling from leads into two Majorana bound states, consisting of
an s-wave superconductor (SC) and a magnetic insulator (M)
junction deposited on top of a quantum spin Hall insulator
(QSH). By tuning the gate voltage across the capacitor, the
superconductor is close to a charge degeneracy point between
a total number of electron n0 and (n0 þ 1). This two-level
system corresponds to a resonant level empty or occupied. At
a small bias, electron tunneling through two Majorana bound
states is equivalent to phase-coherent tunneling through a single
resonant level.
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tor. The ‘‘naive’’ Hilbert space of H is simply the direct
product of electron number eigenstate jni and the two
states of d level (jei and joi), but it is redundant. Instead,
the physical Hilbert space only consists of those states
jn ¼ 2N; ei and jn ¼ 2N þ 1; oi that satisfy the gauge
constraint (3).

When the source is biased at a small voltage V, current
flows to drain by electron tunneling in and out of the
superconductor. Since charging energy Uc favors states
with a fixed number of charge in the superconductor,
only two charge states jn0i and jn0 þ 1i give dominant
contribution to the current for V < U, which is similar to
tunneling through a quantum dot in the Coulomb blockade
regime. To a good approximation, we can then truncate the
Hilbert space keeping only these two states, which we label
by sz ¼ �1. H then becomes

~H ¼ HL þ �

2
sz þ

X
j¼1;2

½�jc
y
j �js� þ ��

j�jcjsþ�: (7)

Here � is the energy difference between jn0i and jn0 þ 1i
and depends on the gate voltage. The gauge symmetry (3)
then becomes i�1�2sz ¼ ð�1Þn0 . The key to solving the
tunneling problem (7) is to combine Majorana and spin
operators into a singe fermion operator f.

�1s
þ ! fþ; �1s

� ! f;

�2s
þ ! ið�1Þn0fþ; �2s

� ! ið�1Þn0þ1f:
(8)

We have checked that this transformation preserves all
commutation relations

f�js
þ; �js

�g ¼ 1; f�is
þ; �js

þg ¼ f�is
�; �js

�g ¼ 0;

f�1s
þ; �2s

�g ¼ �1�2sz ¼ ið�1Þn0þ1; (9)

where the gauge constraint is used in the last equation.
Conceptually, it is not surprising that the transformation (8)
works: after all, the two charge states jn0i and jn0 þ 1i
differ by one electron. Using (8), we rewrite the
Hamiltonian ~H in terms of the fermion operator f:

~H ¼ HL þ �

�
fyf� 1

2

�
þ ð�1c

y
1fþ H:c:Þ

þ ð�1Þn0ð�i�2c
y
2fþ H:c:Þ: (10)

Equations (6)–(8) and (10) are the main results of this
work, and to the best of our knowledge they have not
been reported before. Equation (10) says that electron
tunneling in and out of two spatially separated Majorana
bound states is equivalent to resonant tunneling through a
single level, as shown schematically in Fig. 2. Since reso-
nant tunneling is a coherent process, we conclude that an
incident electron at E<U tunnels into one Majorana
bound state and comes out from its partner far apart still
maintaining phase coherence. Strikingly, the magnitude
and phase of the transmission amplitude—which we call
t—is independent of their distance. In this sense, we call
such a nonlocal electron transfer process ‘‘teleportation.’’

The phase coherence over a long distance shown here is
in fact a direct consequence of Majorana bound states.
Conceptually it can be best understood from electron’s

Green function GeðoÞðx; t; y; 0Þ � hcðx; tÞcyðy; 0ÞieðoÞ de-

fined in the even and odd ground state sector jei and joi,
respectively [20]. Using (5), we find

Ge;oðx; t ! 1; y; 0Þ ¼ �i��
2ðyÞ�1ðxÞ �Oð1Þ (11)

is finite for x� R1, y� R2. The long-time limit corre-
sponds to the low-bias regime we are interested in. The
fact that (11) is independent of jR1 � R2j is most unusual,
as first pointed out in Ref. [21].
We now show that, interestingly, the phase of trans-

mission amplitude t depends on the gate charge Q0 in a
surprising way, and therefore it is sensitive to the fermion
occupation (jei versus joi) of the Majorana bound state
pair. Consider tuning gate voltage to make Q0 change by
one charge unit. The number of electrons in the supercon-
ductor ground state will correspondingly change by one.
Although the excitation energy spectrumUc comes back to
itself, we find

t ! �t; when Q0 ! Q0 � e; (12)

i.e., the transmission phase shift changes by �. This be-
havior is related to the change of fermion number parity in
the ground state. The property (12) is evident from the
ð�1Þn0 factor in ~H, which is valid in the two-level approxi-
mation. Using second-order perturbation theory in the
weak tunneling limit, one can easily show that this
ð�1Þn0 factor comes from the � sign in Eq. (11). In
general, we can prove (12) using the following symmetry
of the full Hamiltonian H and the gauge constraint (3):

UHðQ0; �2ÞU�1 ¼ HðQ0 þ e;��2Þ;
Ui�1�2ð�1ÞnU�1 ¼ i�1�2ð�1Þn; U � �2e

�i�=2:

To detect the phase coherence of the electron teleporta-
tion described above, we consider the interferometer setup
in Fig. 3: a point contact is introduced to partially scatter an
incident electron at the top edge directly to the bottom
edge, and partially transmit it to the superconductor which

SC

V

Vg

C
M

dI/dV h/2e

(2N,2N+1)

(2N-1,2N)

FIG. 3 (color online). Left: An interferometer that probes the
phase-coherent electron teleportation via two Majorana bound
states. Right: Schematic plot of zero bias differential conduc-
tance as a function of magnetic flux at two successive charge
degeneracy points ð2N � 1; 2NÞ and ð2N; 2N þ 1Þ. The h=2e
shift in conductance peak signals the change of fermion number
parity in the superconductor.
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subsequently comes out at the bottom edge. Interference
between the two paths with a magnetic flux � enclosed
leads to a �-dependent differential conductance dI=dV,
which is h=e-periodic. If the direct scattering probability is
large, interference visibility is maximum at the charge
degeneracy point when electron tunneling through
Majorana bound states is on resonance. We schematically
plot the � dependence of dI=dV (at zero bias and zero
temperature) for two successive half-integer charges Q0 in
Fig. 3. The sign reversal of t discussed in (12) leads to a
h=2e shift in the interference pattern.

Discussion.—It is instructive to compare our study of
tunneling into Majorana bound states in the V < U regime
with previous studies which do not include the charging
energy U [6–8]. Instead of using a ‘‘floating’’ supercon-
ductor as in Fig. 2, these works consider a grounded
superconductor in tunneling contact with two leads each
having an independent bias voltage. Such a three-terminal
device can be realized in a geometry shown in Fig. 4. In this
setup, transferring two electrons to the superconducting
condensate does not cost energy. Therefore, when the two
Majorana bound states are sufficiently far apart, an incident
electron from a lead can be Andreev reflected as a hole to
the same lead, but will never appear in the other lead. In
other words, no electron teleportation happens there.
Indeed, Bolech and Demler have shown [6] that (a) the
conductance of each lead is 2e2=h at zero bias and zero
temperature, which is a sign of charge 2e transfer by
Andreev reflection, and (b) the two leads have independent
currents without any correlation (no teleportation). The
same results were also obtained using scattering approach
within Bogoliubov–de Gennes formalism [8]. In the two-
terminal device we studied (Fig. 2), charge 2e transfer is
suppressed by charging energy and the conductance is at
most e2=h because of single electron tunneling.

Finally, we discuss the feasibility of experiments using
the quantum spin Hall insulator HgTe quantum well. A
good candidate for the superconductor in our proposed
setup is indium with Tc ¼ 3:4 K, which is currently used
as electrodes to contact HgTe [22]. The relevant parame-
ters for these materials have been estimated [8,14].
Assuming a proximity-induced gap �� 0:1 meV, the
penetration length of Majorana bound states is about

3 �m. So if the top and bottom Majorana bound states in
Fig. 2 are 30 �m apart, direct tunneling between them is
negligible. If charging energy of the superconductor can be
optimized to be comparable to �, the resonant-tunneling
model for electron teleportation described above is valid
below 1 K. The level broadening � from coupling to leads
sets the temperature scale for detecting the phase
coherence.
In summary, we reveal a striking nonlocal electron

transport phenomenon through Majorana bound states in
a finite-sized superconductor with charging energy. Most
interestingly, the transmission phase shift detects the state
of a qubit made of two spatially separated Majorana bound
states. In a future work [23], we will propose a generalized
scheme to electrically detect the internal states of multiple
Majorana bound states, with an emphasis on implementing
topological quantum computation.
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FIG. 4 (color online). Compared with Fig. 2, the superconduc-
tor here is grounded without charging energy. Charge transfer
between the lead and the superconductor is conducted by local
Andreev reflection that transfers charge 2e.

PRL 104, 056402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 FEBRUARY 2010

056402-4


