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We introduce a fast implementation of the pivot algorithm for self-avoiding walks, which we use to

obtain large samples of walks on the cubic lattice of up to 33� 106 steps. Consequently the critical

exponent � for three-dimensional self-avoiding walks is determined to great accuracy; the final estimate is

� ¼ 0:587 597ð7Þ. The method can be adapted to other models of polymers with short-range interactions,

on the lattice or in the continuum.
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The self-avoiding walk (SAW) model is an important
model in statistical physics [1]. It models the excluded-
volume effect observed in real polymers, exactly capturing
universal features such as critical exponents. It is also the
n ! 0 limit of the n-vector model, which includes the
Ising model (n ¼ 1) as another instance, thus serving as
an important model in the study of critical phenomena.
Exact results are known for self-avoiding walks in two
dimensions [2,3] and for d � 4 (mean-field behavior has
been proved for d � 5 [4]), but not for the most physically
interesting case of d ¼ 3.

We have efficiently implemented the pivot algorithm via
a data structure we call the SAW tree, which allows rapid
Monte Carlo simulation of SAWs of millions of steps. We
discuss this implementation in general terms here, and then
use this implementation to accurately calculate the critical
exponent � for Z3. More details about the implementation
can be found in a companion article [5]. This new algo-
rithm can also be adapted to other models of polymers with
short-range interactions, on the lattice and in the contin-
uum, and hence promises to be widely useful.

An N-step SAW on Zd is a mapping !: f0; 1; . . . ; Ng !
Zd with j!ðiþ 1Þ �!ðiÞj ¼ 1 for each i (jxj denotes the
Euclidean norm of x), and with !ðiÞ � !ðjÞ for all i � j.
We generate three-dimensional SAWs via the pivot algo-
rithm, and calculate various observables which character-
ize the size of the SAWs: the squared end-to-end distance
R2
e, the squared radius of gyration R

2
g, and the mean-square

distance of a monomer from its end points R2
m, where

R2
e ¼ j!ðNÞ �!ð0Þj2;

R2
g ¼ 1

2ðN þ 1Þ2
XN

i;j¼0

j!ðiÞ �!ðjÞj2;

R2
m ¼ 1

2ðN þ 1Þ
XN

i¼0

½j!ðiÞ �!ð0Þj2 þ j!ðiÞ �!ðNÞj2�:

We seek to calculate the mean values of these observables
over all SAWs of N steps, where each SAW is given equal
weight. Their asymptotic forms are expected to be de-

scribed by

hR2
xiN ¼DxN

2�

�
1þa1

N
þ a2
N2

þ���þ bx

N�1
þ b1

N2�1
þ���

þ c0

N�2
þ���

�
þaf; (1)

with 0<�1 < �2 < � � � , and where additional terms of
the form c=Nk0þk1�1þk2�2þk3�3þ��� (k0; k1; k2; k3; � � � � 0)
are not shown. In addition, af indicates terms arising
from the antiferromagnetic singularity, which occurs in
models on loose-packed lattices such as Zd; these terms
are negligible compared with terms included in fits. The
exponents �, �1, and �2 are universal; i.e., they are de-
pendent only on the dimensionality of the lattice and the
universality class of the model, while the amplitudes Dx

are observable dependent. However, amplitude ratios, such
as Dg=De and bg=be, are universal quantities.

The pivot algorithm is a powerful approach to the study
of self-avoiding walks, invented by Lal [6] and later elu-
cidated and popularized by Madras and Sokal [7]. From an
initial SAWof length N, such as a straight rod, new N-step
walks are successively generated by choosing a site of the
walk at random, and attempting to apply a lattice symmetry
operation, or pivot, to one of the parts of the walk; if the
resulting walk is self-avoiding the move is accepted, oth-
erwise the move is rejected and the original walk is re-
tained. The group of lattice symmetries for Z3 has 48
elements, and we use all of them except the identity as
potential pivot operations. Thus a Markov chain is formed
in the ensemble of SAWs of fixed length; this chain sat-
isfies detailed balance and is ergodic, ensuring that SAWs
are sampled uniformly at random. Furthermore, as dem-
onstrated by Madras and Sokal [7] through strong heuristic
arguments and numerical experiments, the Markov chain
has a short integrated autocorrelation time for global ob-
servables, thus making the pivot algorithm extremely effi-
cient in comparison to Markov chains utilizing local
moves. See [7,8] for detailed discussion.
The implementation of Madras and Sokal utilized a hash

table to record the location of each site of the walk. They
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showed that the pivot algorithm has integrated autocorre-
lation time OðNpÞ, with p dimension-dependent but close
to zero (p & 0:2), and argued convincingly that the CPU
time per successful pivot isOðNÞ for their implementation.

Madras and Sokal argued that OðNÞ is best possible
because it takes time of order N to merely write down an
N-step SAW. However, Kennedy [9] recognized that it is
not necessary to write down the SAW for each successful
pivot, and from clever use of geometric constraints devel-
oped an algorithm that broke the OðNÞ barrier. The CPU
time for this implementation grows as a dimension-
dependent fractional power of N (see Table I).

We have extended this idea to obtain a radical further
improvement: for Z2 and Z3 the mean CPU time per
attempted pivot, which we denote TðNÞ, is now only
OðlogNÞ for the range of N studied, and we have a theo-
retical argument that the large N behavior is Oð1Þ. The key
observation is that although there are typically OðNÞ near-
est neighbor contacts for a SAWof lengthN, the number of
contacts between two halves of a SAW is typicallyOð1Þ, as
shown via renormalization group [10] and Monte Carlo
[11] methods.When we attempt to pivot part of a SAW, it is
guaranteed that each of the two subwalks remain self-
avoiding, and hence we only need to determine if the
subwalks intersect. If the resulting walk is self-avoiding,
then we expect, on average, that there will be a constant
number of contacts between the two subwalks.

We will now briefly discuss the relevant data structure
and algorithms; full details can be found in [5]. We imple-
ment a binary tree data structure (see, e.g., [12]) which we
call a SAW tree. The root node of the SAW tree contains
information about the whole walk, including R2

e, R
2
g, R

2
m,

and its minimum bounding box, which is the smallest
rectangular prism with faces of the form xi ¼ c which
completely contains the walk. The two children of the
root node are valid SAW trees, and contain bounding box
information for the first and second halves of the SAW,
etc., until the leaves of the tree store individual sites. The
SAW tree is related to the R tree [13], a data structure used
in the field of computational geometry, but with additional
information encoding the state of the SAW. Thus far the
SAW tree has been implemented for Zd, but can be
straightforwardly adapted to other lattices and the contin-
uum, as well as other polymer models with short-range
interactions. To guarantee optimal performance, we imple-
ment the SAW tree so that it is balanced, i.e., so that the
depth never exceeds some fixed constant times logN. We
define the level of a node as the number of generations
between a node and the leaves.

Bounding boxes enable us to rapidly determine if two
subwalks intersect after a pivot attempt: if two bounding
boxes do not intersect, then the subwalks which they con-
tain cannot intersect. If a pivot attempt is successful, then it
is necessary to resolve all intersections between bounding
boxes of different nodes in the tree on opposite sides of the
pivot site. Our implementation ensures that intersection
tests are typically performed between bounding boxes of
nodes which are at the same level. We argue in [5] that the
nodes at fixed level in the SAW tree form a renormalized
walk, and the intersections between bounding boxes cor-
respond to contacts in the original walk. This implies that
at each level there are Oð1Þ intersections, and as the tree
has OðlogNÞ levels this leads to the conclusion that a
successful pivot takes time OðlogNÞ. Successful pivots
occur with probabilityOðN�pÞ, so overall mean time spent
on successful pivots isOðN�p logNÞ. When a pivot attempt
is unsuccessful, with high probability the first intersection
occurs near the pivot site. Thus only a small fraction of the
SAW tree needs to be traversed to find the intersection, and
we argue in [5] that this takes mean time Oð1Þ.
Unsuccessful pivots occur with probability Oð1Þ, and so
the overall behavior is TðNÞ ¼ OðN�p logN þ 1Þ ¼ Oð1Þ.
In Fig. 1 we show TðNÞ for Z2 and Z3 from a separate data
run, with maximum length N ¼ 228 � 1 � 2:68� 108. In
both cases it is apparent there is a crossover due to the
shorter latency of cache versus main memory. In [5] we
argue that Oð1Þ behavior may be reached only for very
large N, which makes interpretation of Fig. 1 difficult. For
Z2 some curvature is visible, and the trend appears con-
sistent with TðNÞ approaching a constant for sufficiently
large N. The exponent p is smaller for Z3 (p � 0:11)
compared with Z2 (p � 0:19); hence, the approach to a
constant is far slower, and in fact almost no curvature is
visible for Z3. We believe the numerical evidence provides
a strong case that TðNÞ is at most OðlogNÞ, and is consis-
tent with TðNÞ ¼ Oð1Þ; see [5] for more details.
TðNÞ is shown for the various implementations in

Table I. For SAWs of length N ¼ 106 on the cubic lattice,
the performance gain for our implementation is approxi-

TABLE I. TðNÞ, mean time per attempted pivot for N-step
SAWs.

Lattice Madras and Sokal Kennedy This Letter

Square OðN0:81Þ OðN0:38Þ Oð1Þ
Cubic OðN0:89Þ OðN0:74Þ Oð1Þ

0

5

10

15

20

25

30

102 103 104 105 106 107 108

N

2

3

T
im

e
pe

r
at

te
m

pt
ed

pi
vo

t(
µs

)

FIG. 1. TðNÞ for Z2 and Z3. Note that these estimates were
obtained in a separate data run on a different computer from the
main experiment, with lengths from N¼27�1 to N ¼ 228 � 1.
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mately 200 when compared with Kennedy’s, and over a
thousand when compared with that of Madras and Sokal.
The dramatic performance gain from the new implemen-
tation not only makes it possible to obtain large samples of
walks with millions of steps, it also makes the regime of
very long walks, of up to 109 steps, accessible to computer
experiments.

For SAWs of lengthN, it is expected that the exponential
autocorrelation time is approximatelyOðN=fÞ [7], where f
is the fraction of pivot attempts which are successful. The
first 20N=f configurations were discarded, ensuring that
for all practical purposes SAWs were sampled from the
uniform distribution. Batch estimates of hR2

ei33554431, using
a batch size of 108, are shown in Sec. 4 of [5]; in this case
the first 50 batches were discarded, while initialization bias
is visually apparent for (at most) the first 10 batches.

The computer experiment was performed on a cluster of
AMD Opteron Barcelona 2.3 GHz quad core processors,
for a total of 16 500 CPU hours. Code was written in C, and
compiled with gcc. 1011 pivot attempts were made on
SAWs of length ranging from 15 to 3:36� 107, for a grand
total of 1:89� 1013 pivot attempts. Data were collected
from every pivot attempt for f and the Euclidean-invariant
moments R2k

x ¼ ðR2
xÞk with x 2 fe; g;mg; 1 � k � 5 [14].

The longest walks with N ¼ 3:36� 107 required 3 GB of
memory; much longer walks could conceivably be simu-
lated in the future. By comparing fits from the whole data
set (N � 3:36� 107) with fits from a reduced data set
(N � 2:1� 106), we confirmed that data from the longest
walks were indeed highly useful in tying down the various
estimates (see Fig. 1 in [15]). However, the greatest benefit
from the simulation of truly long walks, of say 109 steps,
may be the ability to directly simulate properties of real-
istic systems, such as DNA knotting, rather than determi-
nation of universal parameters.

Monte Carlo estimates of global parameters are col-
lected in Tables II–V, Sec. 2 of [15], with confidence
intervals calculated using the standard binning technique.
For all lengths studied the integrated autocorrelation time
of the Markov chain is much less than the batch size of 108.
We confirm the accuracy of the confidence interval esti-
mates by studying the effect of batch size in Sec. 5 of [5].

We estimated the critical exponents � and�1 � 1=2 and
associated amplitudesDx and bx by fitting the leading term
and leading correction of Eq. (1) via weighted nonlinear
regression. We truncated the data set by requiring N �
Nmin, with Nmin a free parameter. We shifted the value of N
of Eq. (1) by an amount �Nx to obtain smoother conver-
gence by altering the subleading corrections (see, e.g.,
[16]); estimates for �, �1, Dx, and bx are unaffected in
the limit Nmin ! 1. With �Ne ¼ 0:35, �Ng ¼ 1, �Nm ¼
0:4, our final model was

hR2
xiN ¼ DxðN þ �NxÞ2�

�
1þ bx

ðN þ �NxÞ�1

�
: (2)

Unfortunately we cannot fit the next-to-leading corrections
with exponents 1, �2 � 1, and 2�1 � 1 as the differences

between them are far too small to resolve. For sufficiently
large Nmin we found that reduced �2 values for all fits
approached 1 from above, indicating Eq. (2) is asymptoti-
cally correct.
Final estimates of parameters have been made directly

from Figs. 2 and 3, combining multiple sources visually in
an attempt to make estimates robust, and allow the reader
to critically evaluate our final results. We do not distinguish
between subjective and statistical errors, as we believe that
in this context the distinction is itself quite subjective [17].
We provide here some guidance for the interpretation of
Figs. 2 and 3, and refer the interested reader to [18] for
(much) more information on series analysis.
(i) We plot estimates against N�y

min, where y is chosen

such that N�y
min is of the same order as the residual error

from the fit. The estimates for �1 and bx have y ¼ 1�
�1 � 0:47, and y ¼ 1 for � and Dx.
(ii) We seek to extrapolate the fits to Nmin ¼ 1, or

N�y
min ¼ 0. Depending upon whether the true value yexact

is less than, equal to, or greater than y, the estimates would
approach a limiting value at N�y

min ¼ 0 with infinite, finite,

or zero slope, respectively.
(iii) Successive estimates are highly correlated, and so

any trend which lies within the error bars should be dis-
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regarded. Only some of the error bars are plotted in order to
reduce visual noise.

(iv) There are no bounds on the errors of the truncated
asymptotic formulas, and hence the interpretation of the
graphs is subjective. The underlying systematic error is
observable dependent, and so combining estimates from a
variety of observables improves robustness.

In Fig. 2 we plot estimates of �1 with our final result
plotted at 0; the error bar reflects the scatter between
observables. In Fig. 3 we plot estimates for �, biased
with the lower and upper limits of our range for �1, with
our final result at 0. Similar plots for the amplitudes are
given in Figs. 5 and 6 of [15]. We have conservatively
chosen the error bar for the final result to encompass
estimates from all observables hR2

xi. As the amplitudes
Dx are highly correlated with estimates for �1, the biasing
of �1 greatly extends the range over which stable fits can
be obtained. This is the reason the biased fits are preferred
over the unbiased fits shown in Fig. 3 of [15].

We report our final results in Table II, and in addi-
tion we have Dm ¼ 0:586 87ð12Þ, be ¼ �0:49ð5Þ, bg ¼
�0:1125ð125Þ, and bm ¼ �0:295ð30Þ. If one assumes the
hyperscaling relation d� ¼ 2� �, then one also obtains
� ¼ 0:237 209ð21Þ. The estimates of �, De, and Dg are in

accordance with previous results, although more accurate.
The estimate for �1 is more accurate than the previous
Monte Carlo value [8], but less accurate than the
Monte Carlo renormalization group estimate of [22],
which relies upon an uncontrolled although accurate ap-
proximation. The claimed accuracy of the field theory
estimates [21] for �1 is also comparable, but as discussed
by Li et al. [8] these calculations have underlying system-
atic errors of uncertain magnitude. Any desired amplitude
ratios can be calculated from the amplitude estimates. The
rational number with smallest denominator within 3 stan-
dard deviations of � ¼ 0:587 597 is 161=274, suggesting
that � cannot be expressed as a rational number with small
denominator.

We would like to stress that, due to the neglect of
subleading terms, there are underlying systematic errors
in our estimates which are not and cannot be controlled.
We have the luxury of high quality data from long walks,
and have attempted to be conservative with our claimed
errors, but acknowledge there is a risk that the (subjective)
confidence intervals may not be sufficiently large.
In summary, an efficient version of the pivot algorithm

for SAWs has been implemented and used to calculate �;
the algorithms developed promise to be widely useful in
the Monte Carlo simulation of SAWs and related models.
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TABLE II. Comparison of parameter estimates.

Source
a

� �1 De Dg

This Letter 0.587 597(7) 0.528(12) 1.220 35(25) 0.195 14(4)

[16]
b
Series 0.587 74(22) 1.217 8(54)

[19] MC 0.5874(2)

[20]
c
Series 0.587 55(55) 1.225

[21] FT d ¼ 3 0.5882(11) 0.478(10)

[21] FT � bc 0.5878(11) 0.486(16)

[22] MCRG 0.587 56(5) 0.5310(33)

[8]
d
MC 0.5877(6) 0.56(3) 1.216 67(50) 0.194 55(7)

aAbbreviations: MC � Monte Carlo, FT ¼ Field theory, d ¼
3 � d ¼ 3 expansion, � bc � � expansion with boundary con-
ditions, MCRG � Monte Carlo renormalization group.
bUsing Eqs. (74) and (75) with 0:516 � �1 � 0:54.
cNo error estimates were made in [20], but estimates for � were
in the range 0:5870 � � � 0:5881.
dIn addition be ¼ �0:483ð39Þ, bg ¼ �0:1143ð47Þ. De, Dg, be,
and bg estimates were biased with � ¼ 0:5877, �1 ¼ 0:56; the
confidence intervals were not intended to be taken seriously.
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