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We study a new class of chaotic systems with dynamical localization, where gain or loss mechanisms

break the Hermiticity, while allowing for parity-time (PT ) symmetry. For a value �PT of the gain or loss

parameter the spectrum undergoes a spontaneous phase transition from real (exact phase) to complex

values (broken phase). We develop a one parameter scaling theory for �PT , and show that chaos assists

the exact PT phase. Our results have applications to the design of optical elements with PT symmetry.
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Introduction.—Systems exhibiting parity-time (PT )
symmetry have been the subject of rather intense research
activity during the last few years. This interest was moti-
vated by various areas of physics, ranging from quantum
field theories and mathematical physics [1–4] to solid state
physics [5,6] and classical optics [7–13]. A surprising
result that was pointed out in some of these investigations
was the possibility that PT symmetric Hamiltonians H
can have real spectrum, despite the fact that they can, in
general, be non-Hermitian [3]. The departure from
Hermiticity is due to the presence of various gain or loss
mechanisms which occur in a balanced manner, so that the
net loss or gain of ‘‘particles’’ is zero. Furthermore, as
some gain or loss parameter � that controls the degree of
non-Hermiticity of H changes, a spontaneous PT sym-
metry breaking occurs. At this point, � ¼ �PT , the eigen-
functions of H cease to be eigenfunctions of the
PT operator, despite the fact that H and the
PT operator commute [3]. This happens because the
PT operator is antilinear, and thus the eigenstates of H
may or may not be eigenstates of PT . As a consequence,
in the broken PT symmetry phase the spectrum becomes
partially or completely complex. The other limiting case
where bothH andPT share the same set of eigenvectors,
corresponds to the so-called exact PT symmetric phase in
which the spectrum is real.

A promising realization of PT symmetric systems
appears in the frame of optics, where a medium with
alternating regions of gain and loss can be synthesized,
such that the (complex) refraction index satisfies the con-
dition n�ð�xÞ ¼ nðxÞ [6–11]. This kind of synthetic PT
materials exhibits unique characteristics such as ‘‘double
refraction’’ and nonreciprocal diffraction patterns, which
may allow their use as a new generation of unidirectional
optical couplers or left-right sensors of propagating light
[9]. Recently, the interest in PT systems bursted further
due to their experimental realization [12,13]. In this re-
spect, one of the emerging questions is how one can
enhance the parameter regime for which exact PT phase

is present, while at the same time provide a general theo-
retical formalism for the behavior of �PT , in terms of
system parameters like imperfections, system size, com-
plexity of the underlying classical (ray) dynamics, etc.
In this Letter, we investigate the behavior of the exact

PT phase in a new setting of systems, namely, a class of
Hamiltonians whose classical (ray) dynamics is chaotic
while its quantum or wave analogue can show dynamical
localization [14,15], a dual phenomenon to Anderson lo-
calization appearing in disordered media [16]. As a result
of this duality, our study (although performed in the frame-
work of wave chaos systems) is directly relevant to disor-
dered quasi-one-dimensional systems like disordered
arrays of optical fibers [17,18]. We have developed a one
parameter scaling theory for �PT and show that it is the
only relevant parameter that controls the variation of �PT
with N, the system size of a sample. Specifically,

@~�PT

@ logN
¼ �ð~�PT Þ; where ~�PT � N�PT (1)

where � is a universal function of ~�PT alone.
Furthermore, we have investigated the distribution of the

PT parameter P ð�PT Þ in the localized and delocalized
(chaotic) regimes and found that it reflects the properties of
the respective system. Specifically, we have found that
P ð�PT Þ is log normal in the former case, while in the
latter it follows a Wigner distribution, reflecting the level
repulsion characterizing systems with chaotic or diffusive
dynamics. Our results have direct applications not only to
coupled optical PT elements but also to cold atoms
moving in a complex PT potential [19].
Model.—The prototype model of quantum chaos is the

celebrated kicked rotor (KR) which exhibits the phenome-
non of dynamical localization (DL) [14,15]. Specifically, it
has been shown that the quantum suppression of classical
diffusion taking place in momentum space is a result of
wave interference phenomena similar in nature to the ones
responsible for Anderson localization in random media.
We study a variation of the kicked rotor (the PTKR)
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[14,20–22], defined by the time-dependent Hamiltonian
[23]

H ¼ p2

2
þK0VðqÞ

X
n

�ðt�nTÞ; VðqÞ ¼ cosðqÞþ i�q

(2)

where (q, p) are a pair of canonical variables and q 2
½��;�Þ [24]. The kicks have strength K0 and period T,
which we set to unity without loss of generality. In order to
avoid any integrable regions in the classical phase space (at
� ¼ 0) we take K0 � 5. We mark that in the framework of
geometric optics Eq. (2) describes the propagation of light
ray along a chain of optical elements equally placed along
the axis of propagation t, in distance T from one another
[25,26]. Furthermore, we assume that the elements are
purely refractive and ideally thin with a variation only in
one transverse direction q. The phase space variable p ¼
n0dq=dt is proportional to the slope of the ray, while n0 is
the free-space refractive index.

The wave (quantum) dynamics of this system is de-
scribed by the one-period evolution operator

U ¼ expð�ip̂2=4@Þ expð� ikVðq̂ÞÞ expð�ip̂2=4@Þ; (3)

where k ¼ K0=@, p̂ ¼ @l̂ ¼ �i@d=dq, and �N=2 � l �
N=2. For � ¼ 0, it was found that the eigenfunctions
c l � hljc i of U, are exponentially localized in mo-
mentum space with a localization length � �
limN!11=

P
N
l jc lj4 � k2=2 [14,15]. They are solutions

of the eigenvalue problem

U jc i ¼ �jc i; � ¼ expð�i�Þ (4)

where the eigenvalues � are unimodular at � ¼ 0, and the
phases � are referred to as quasienergies. In the case of @ ¼
2�M=N with M, N integers, Eq. (3) defines a dynamical
system on a torus. The localization properties of the eigen-
states are determined by the scaling parameter � ¼ N=�:
if � � 1 the eigenstates are exponentially localized while
if � � 1 they are ergodically spread over the momentum
space.

PT -breaking scenario.—In the exact PT phase (i.e.,
� � �PT ) all eigenvalues are restricted to the unit circle,
resulting in a real quasienergy spectrum (see insets of
Fig. 1). We find that the mechanism for transition to the
broken PT phase is a level crossing between the pair of
eigenvalues which are closest on the unit circle for � ¼ 0.
However, rather than splitting into the complex plane
symmetrically around the real line as in the case of
Hamiltonian systems [6], these pairs split in a logarithmi-
cally symmetric manner away from the unit circle (one to
the interior, the other to the exterior). Considering the first
breaking pair of levels as an isolated two level system [27]
we find that the first branching is described by j�	j2 /
expð	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
PT

� �2
q

Þ. This square root singularity near the

bifurcation point is quite universal of an exceptional point
and applies both for � � 1 and � � 1. This is further

confirmed numerically in Fig. 1 where we present the
spontaneous PT symmetry breaking scenario for two
representative cases associated with localized and delocal-
ized (chaotic) parameter values.
Scaling theory for �PT .—We consider first the limiting

case � � 1 where dynamical localization is dominant. To
clarify the picture we start from the Hermitian limit � ¼ 0.
Imagine for the moment that the kicking strength k is zero.
Then all states are �-like functions localized at various
momenta�N=2 � l � N=2. There is an exact degeneracy
of multiplicity two between the states localized at	l0, i.e.,
symmetrically around l ¼ 0. For k � 0 this degeneracy is
lifted. The eigenstates whose centers of localization are a
distance d ¼ 2l0 � �
 k2 apart, form a quasidegenerate
pair of symmetric-antisymmetric states [21]. Each has two
peaks, near the momenta 	l0, and decays exponentially
c ðlÞ 
 ð1= ffiffiffi

�
p Þ expð�j 	 l0 � lj=�Þ away from them

(double hump states). Thus, the eigenstates in a
P -symmetric KR are organized into pairs (doublets) or-
dered by quasienergy difference, �1 < �2 < � � � . The
splitting between quasidegenerate levels is �N=2�l0þ1 

ð1=�Þ expð�2l0=�Þ while the energy separation between
consecutive doublets is much larger, of the order of the
mean level spacing of the system, �
 1=N. Specifically,
the smallest energy splitting �min ¼ �1 
 ð1=�Þ�
expð�N=�Þ corresponds to states that were originally
located at the extreme points of the momentum ‘‘lattice,’’
i.e., l0 ¼ 	N=2.
As � is switched on the eigenstates of each pair will

initially preserve their PT -symmetric structure [6,28]. At
� ¼ �PT ’ �min ¼ �1, the two levels associated with �1

will cross, breaking the PT symmetry (see Fig. 1 inset).
As � > �PT these modes cease to be eigenstates of the
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FIG. 1 (color online). Scaling behavior of �PT for the PTKR
defined by Eq. (3) for various M, and K0 > 5 with N ¼ 63 (pink
triangles), 127 (red circles), 225 (green squares), and 511 (blue
diamonds). All data show a nice collapse to the theoretical
prediction in Eq. (6) (dashed black line). Inset: Parametric
evolution of eigenvalue magnitudes for chaos (DL) in the upper
(lower) figure with N ¼ 127, and � ¼ 0:05 (10). The first
branching pair is responsible for the transition to broken PT
phase, and in both cases follows the predicted functional form
(see text) shown with blue circles.
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PT operator. Instead, the weight of each is gradually
shifted towards one of the localization centers [6,28]. For
larger � the next doublet (with splitting �2) will come into
play, creating a second pair of complex eigenvalues for � ’
�2 (see Fig. 1 inset), etc.

Let us now consider the opposite limit of � � 1, where
the eigenstates are ergodically spread all over the system.
In this case, the picture of doublets with exponentially
small energy splittings is not valid and �PT becomes of
the order of the minimal level spacing, �min, in the corre-
sponding Hermitian problem. This statement follows from
perturbation theory with respect to �. The unperturbed
(i.e., � ¼ 0) energy levels are real, and are separated by
intervals of order 1=N, so that �min ’ 1=N. Finite � leads
to level shifts proportional to �2 (the first order correction
vanishes due to PT symmetry) and for � ¼ �PT ’ �min

the perturbation theory breaks down, signaling level cross-
ing and the appearance of the first pair of complex eigen-
values. Thus, the energy scale for the PT threshold in the
N=� � 1 limit (�PT ’ 1=N) widely differs from that for

N=� � 1 (�PT ’ ð1=�Þe�N=�).
Combining both cases, we conclude that in the two

limits of weak and strong localization we have that

~� PT ¼ fð�Þ ¼
�
Oð1Þ for � � 1;
�expð��Þ for �> 1:

(5)

Our numerical results for the PTKR model, are reported
in Fig. 1 and are in excellent agreement with the above
theoretical predictions. Moreover, they clearly show that
the scaling function fðxÞ is regular and interpolates
smoothly between the two limiting cases. This allows us
to conclude that

~� PT � N�PT ¼ f

�
� � N

�

�
; (6)

which can be rewritten in the form of Eq. (1). This is the
main result of the present Letter, as it allows us to postulate
the existence of a � function for the ~�PT of generic
chaotic (or quasi-1D disordered) systems. In the remainder
of the Letter, we will focus on the statistical properties of
�PT as a function of the parameter �.

Distribution of �PT .—The above discussion pertains
only to the behavior of a ‘‘typical’’ system. A full theory,
however, must be formulated in statistical terms and deal
with probability distributions P ð�PT Þ. To this end we
exploit the equivalence between �PT and �min which is
confirmed numerically in the inset of Fig. 2(a) for� values
spanning the whole interval from the localized to extended
regime. Thus, we instead analyze the distribution P ð�minÞ.
For better statistics, an ensemble of P -symmetric KR
systems has been created by randomizing the phases of
the kinetic part of the evolution operator given by Eq. (3).
In all cases, the numerical distribution P ð�minÞ involved
more that 104 data points for statistical processing.

We start our analysis from the localized regime � � 1.
There are several sources of fluctuations in �1: fluctuations

in the position and energy of the relevant localized states,
as well as what can be termed ‘‘fluctuations in the wave
functions.’’ By this we mean that a localized wave function
exhibits strong, log-normal fluctuations in its ‘‘tails,’’ i.e.,
sufficiently far from its localization center [29]. This latter
source of fluctuations appears to be the dominant one and it
immediately yields a log-normal distribution for �1 (see
Fig. 2), since �1 is proportional to the overlap integral
between a pair of widely separated and strongly localized
states [6,29]. We confirm numerically that for increased �
we do in fact approach such a distribution (see Fig. 2).
In contrast, in the delocalized regime � � 1, the struc-

ture of the eigenfunctions is random [14,21] and they are
ergodically spread over the momentum space. Thus there is
no quasidegeneracy for such states; instead, there is a level
repulsion due to strong eigenstate overlap. This results in a
Wignerian distribution for the minimum energy difference,
i.e., P ð�minÞ ¼ ð�=2Þ�min expð���2

min=4Þ, which is dra-

matically different from the one found in the localized
regime [see Fig. 2(a)]. Since P ð�minÞ 
 P ð�PT Þ we con-
clude that in the case of wave chaos P ð�PT ! 0Þ ! 0;
i.e., there always exists a � interval for which we will have
an exact PT phase. This observation can be used as a new
criterion of wave chaos. Our numerical results for � ¼
0:01 are shown in Fig. 2(b), and are in excellent agreement
with the above theoretical considerations.
Conclusions.—In conclusion, we have studied a new

class of quantum chaotic systems with dynamical localiza-
tion that also possess a PT symmetry. These systems are
described by a non-Hermitian Hamiltonian due to the
existence of well-balanced gain or loss mechanisms and
show a spontaneous PT symmetry breaking, i.e., a tran-
sition from a real to a complex spectrum, for some value
�PT of the gain or loss parameter �. We have developed a
one-parameter scaling theory for the rescaled critical gain
or loss parameter ~�PT ¼ �PTN, and conclude that there
is a universal � function that depends only on ~�PT itself,
which controls the variation of ~�PT with the system size.
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FIG. 2 (color online). (a) Distributions of �min for localized
eigenfunctions displaying a convergence to log-normal behavior.
Centers are shifted for ease of comparison. Inset: Linear relation
between �min and �PT over roughly 12 orders of magnitude.
Parameters and symbols are the same as in Fig. 1.
(b) Distribution of minimum level spacings in the chaotic regime
in which Wignerian behavior (blue line) is observed. Inset: The

integrated distribution Ið�minÞ ¼
R�min

0 P ðxÞdx in a log-log plot.

The best fit (blue line) has power two. In both cases, N ¼ 127.
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Furthermore, we have analyzed the distribution P ð�PT Þ in
the localized and delocalized regimes, and show that it
drastically differs in these two limits. In the former case it
is log normal while in the latter it follows a Wigner
statistics reflecting the chaoticity of the underlying classi-
cal dynamics. Our study opens the way to quantify the
spontaneous breaking of the PT symmetry in terms of
universal � function.

The results presented here are based on a simple con-
nection between �PT and the (minimal) level spacing�min

[see inset of Fig. 2(a)] which is inspired by an isolated two
level matrix model (see section on the PT -breaking sce-
nario). Although this is the most generic type of scenario,
describing a large number of physical realizations associ-
ated with classically chaotic (or quasi-1D disordered) sys-
tems, there are many other interesting cases which need to
be explored. For example, in the PT -symmetric KR
model presented above, we used a discontinuous (at the
boundaries) imaginary potential ImVðqÞ which gives a
lower bound on the behavior of �PT (worst case scenario).
However, preliminary analysis [28] shows that if ImVðqÞ is
a continuous and analytic function the PT symmetry
breaking scenario can be different. In such a case the
matrix elements of ImVðqÞ between P doublets are expo-
nentially small in the regime of dynamical localization.
Thus, according to the lowest order perturbation theory, the
energy levels of these two states remain nearly parallel (as
a function of �), and hence typically �PT � �min ¼ �1.
We also note that one can observe spontaneous antibreak-
ing of PT symmetry, i.e., for some � � �PT, a pair of
nonunimodular eigenvalues recombines again into a pair of
unimodular eigenvalues, and sometimes (but more rarely
as N is increasing) one may even find situations for which
all levels simultaneously become unimodular (global re-
covery of the exact PT phase) [28]. Understanding of
such antibreaking mechanism could be of significant inter-
est for optics applications. Because of lack of space these
results will be discuss elsewhere [28].

It will be interesting to extend this line of study to higher
dimensions (possibly 3D disordered systems with a metal-
to-insulator phase transition). We expect that our study will
be of interest not only for the optics community but also for
the atomic physics community where complex optical
potentials have been recently constructed [19].
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[13] C. E. Rüter et al., Nature Phys. (to be published).
[14] F.M. Izrailev, Phys. Rep. 196, 299 (1990).
[15] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev.

Lett. 49, 509 (1982).
[16] P.W. Anderson, Phys. Rev. 109, 1492 (1958); A.

MacKinnon and B. Kramer, Rep. Prog. Phys. 56, 1469
(1993).

[17] Th. Pertsch et al., Phys. Rev. Lett. 93, 053901 (2004)
[18] F. Lederer et al., Phys. Rep. 463, 1 (2008).
[19] M.K. Oberthaler, R. Abfalterer, S. Bernet, J.

Schmiedmayer, and A. Zeilinger, Phys. Rev. Lett. 77,
4980 (1996); S. Bernet, R. Abfalterer, C. Keller, M.K.
Oberthaler, J. Schmiedmayer, and A. Zeilinger, Phys.
Rev. A 62, 023606 (2000).

[20] G. Casati, B. V. Chirikov, F.M. Izrailev, and J. Ford, Lect.
Notes Phys. 93, 334 (1979).

[21] G. Casati, R. Graham, I. Guarneri, and F.M. Izrailev, Phys.
Lett. A 190, 159 (1994).

[22] B. V. Chirikov, F.M. Izrailev, and D. L. Shepelyansky, Sov.
Sci. Rev. Sect. C 2, 209 (1981); Physica (Amsterdam)
33D, 77 (1988).

[23] We mark that the extension to nonautonomous PT sys-
tems is another novelty of our calculations, which is of
potential interest to the cold atoms community.

[24] If the imaginary component of the potential is taken to be
continuous and analytic at q ¼ 	�, then coupling matrix
elements of ImVðqÞ between localized states in momen-
tum space are exponentially small and one has a funda-
mentally different behavior as discussed later.

[25] J. Krug, Phys. Rev. Lett. 59, 2133 (1987).
[26] R. E. Prange and S. Fishman, Phys. Rev. Lett. 63, 704

(1989).
[27] We argue, in the spirit of degenerate perturbation theory,

that the two level approximation becomes accurate as soon
as the level splitting between the observed two levels is
much smaller than all the level spacing to other levels.

[28] C. T. West, T. Prosen, and T. Kottos (to be published).
[29] B. Altshuler and V. Prigodin, Zh. Eksp. Teor. Fiz. 95, 348

(1989).

PRL 104, 054102 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 FEBRUARY 2010

054102-4


