
Anomalous Thermalization of Nonlinear Wave Systems
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We report theoretically and experimentally in an optical system a process of anomalous thermalization

of one-dimensional nonlinear Hamiltonian waves. It is characterized by an irreversible evolution of the

waves towards a specific equilibrium state of a fundamental different nature than the expected thermody-

namic equilibrium state. A kinetic approach of the problem reveals that this phenomenon is due to the

existence of a local invariant in frequency space. A novel family of equilibrium distributions is

discovered, which is found in quantitative agreement with the numerical simulations.
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It has long been established since the pioneering work of
Fermi, Pasta, and Ulam (FPU) in the 1950s that a one-
dimensional nonlinear chain of particles may not be able to
achieve a state of thermal equilibrium, i.e., a state in which
the energy is equidistributed among all modes on the
average. This fact has important implications for the ergo-
dic hypothesis at the foundation of statistical mechanics.
Fundamental mathematical and physical discoveries have
led to a better understanding of the FPU problem, although
it is by no means completely understood [1].

More recently, the FPU problem and the question of
existence of a genuine thermalization process have been
revisited in the field of ultracold Bose gases [2], which are
known to be described by the nonlinear Schrödinger (NLS)
equation, even beyond the zero temperature limit [3]. The
NLS equation also provides a universal description of
classical nonlinear wave systems, in which FPU recur-
rences have been interpreted as a (Benjamin-Feir) modula-
tional instability process [4,5]. In spite of the large number
of theoretical studies, experimental demonstrations of the
FPU recurrences are very rare. They have been observed in
deep water waves [6], and, more recently, in magnetic
feedback rings [7] and nonlinear optical systems [8]. On
the other hand, the asymptotic dynamics leading to the
process of thermalization has not been the subject of an
accurate experimental demonstration, because irreversible
thermalization is predicted in a reversible (lossless) wave
system, whereas any realistic system exhibits dissipation.

The process of thermalization of a nonlinear wave sys-
tem is known to be characterized by an irreversible evolu-
tion of the wave towards the thermodynamic Rayleigh-
Jeans (RJ) equilibrium distribution [3,9–11]. We show in
this work that, in contrast with this commonly accepted
picture of thermalization, a one-dimensional wave system
may exhibit a process of anomalous thermalization. It is
characterized by an irreversible evolution of the waves
towards a specific equilibrium state, which is of a funda-
mental different nature than the conventional RJ equilib-
rium states. The kinetic wave theory reveals that the
anomalous thermalization is due to the existence of a local

invariant in frequency space J! which originates in degen-
erate resonances of the system. In contrast to conventional
integral invariants that lead to a generalized RJ distribu-
tion, here, it is the local nature of the invariant J! that
makes the new equilibrium states fundamentally different
than the usual RJ equilibrium states. The anomalous ther-
malization is characterized by a process of entropy pro-
duction: the novel family of equilibrium states is
associated to a maximum of the nonequilibrium entropy
subject to the additional constraint J! ¼ const. Experi-
ments realized with optical waves provide a signature of
the transient process of this anomalous thermalization.
The first model we consider is the vector NLS equation,

which is known to be relevant for the description of vector
phenomena in optics [12], plasma [13], hydrodynamics
[14], or Bose-Einstein condensates [15]

i@zA1 ¼ �@2t A1 þ ðjA1j2 þ �jA2j2ÞA1; (1)

i@zA2 ¼ ��@2t A2 þ ðjA2j2 þ �jA1j2ÞA2: (2)

As usual in optics, the distance z of propagation in the
nonlinear medium plays the role of an evolution ‘‘time’’
variable, while t measures the time in a reference frame
moving with the waves [12]. We normalized the problem
with respect to the nonlinear length L0 ¼ 1=ð�e20Þ and time

�0 ¼ ð�1L0Þ1=2, where � is the nonlinear coefficient, �j

the dispersion coefficients of Aj, and e
2
0 the mean intensity

of A1. With these units, � denotes the ratio between the
dispersion coefficients, and � the ratio between the cross-
and self-interaction coefficients. The dispersion relations
of A1;2 read k1ð!Þ ¼ !2, k2ð!Þ ¼ �!2. Note that Eqs. (1)

and (2) conserve the ‘‘power’’ Nj ¼
R jAjj2dt of each

component Aj and the Hamiltonian H [12]. In the particu-

lar cases� ¼ � ¼ 1 (or� ¼ � ¼ �1), Eqs. (1) and (2) are
known to be integrable [12,16]. In this work we shall
consider the nonintegrable case.
A physical insight into anomalous thermalization may

be obtained by integrating numerically the NLS equations
(1) and (2). The initial conditions refer to partially coherent
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waves with a Gaussian spectrum and random spectral
phases; i.e., A1;2ðz ¼ 0; tÞ are of zero mean and obey a

stationary statistics. The numerical simulations reveal that,
after a complex transient characterized by a spectral broad-
ening, the two waves reach a (statistical) stationary state;
i.e., the averaged spectra no longer evolve in the propaga-
tion. The simulations show that such stationary states are of
a fundamental different nature depending on the value of
the dispersion coefficient � in Eqs. (1) and (2). For � � 1
one recovers the standard thermalization process, which is
characterized by an irreversible evolution of the fields
towards the RJ equilibrium spectrum, whose tails satisfy
the property of energy equipartition [see Fig. 1(a)] [10,11].
We observed, however, a breakdown of energy equiparti-
tion for � ¼ 1. This is illustrated in Fig. 1(a), where the
energy in frequency space, �jð!Þ ¼ kjð!Þnjð!Þ, is not

equally distributed among the modes, and thus the spectra
do not exhibit the expected RJ power-law behavior,
njð!Þ � kjð!Þ�1 �!�2.

We show below that this anomalous thermalization may
occur in a large variety of nonlinear systems, whenever
they exhibit degenerate resonances. To grasp this anoma-
lous thermalization process, we make use of wave turbu-
lence theory [10], which is based on a natural asymptotic
closure of the moments’ equations induced by the disper-
sive properties of the waves. Despite the formal reversibil-
ity of Eqs. (1) and (2) the wave turbulence theory derives a
set of irreversible kinetic equations that govern the evolu-
tions of the averaged spectra of the fields njð!; zÞ, with
hajð!1; zÞa�j ð!2; zÞi ¼ njð!1; zÞ�ð!1 �!2Þ, aj being the

Fourier transform of Aj [9,10]:

@znjð!; zÞ ¼
Z

d!1d!2d!3WN ; (3)

where N ¼ njð!Þnið!1Þnið!2Þnjð!3Þ½n�1
j ð!Þ þ

n�1
i ð!1Þ � n�1

i ð!2Þ � n�1
j ð!3Þ�. The resonant condi-

tions of energy and momentum conservation are expressed

by the Dirac � functions in W ¼ �2

� �ð!þ!1 �!2 �

!3Þ�½kjð!Þ þ kið!1Þ � kið!2Þ � kjð!3Þ�. Equations (3)

conserve the (quasi)particle number of each field Aj, Nj ¼R
njð!Þd! and the kinetic contribution to the energy E ¼P
iEi, Ei ¼

R
kið!Þnið!Þd!. The irreversible character of

Eq. (3) is expressed by a H theorem of entropy growth,
dS=dz � 0, with S ¼ P

iSi, SiðzÞ ¼
R
logðniÞd! being

the nonequilibrium entropy. The thermodynamic equilib-
rium spectra nRJj ð!Þ realizing the maximum of S½nj�, given
the constraints of conservation of E and Nj, refer to the

well-known RJ distribution

nRJj ð!Þ ¼ T=½kjð!Þ �	j�; (4)

where T denotes the temperature and 	j the chemical

potential of Aj [10,11]. The tails of the RJ spectrum (4)

verify the property of energy equipartition, nRJj �!�2,

which is in contrast with the numerical results discussed
in Fig. 1(a) for � ¼ 1. However, we shall see below that
the kinetic equations (3) still provide a detailed description
of the anomalous thermalization process.
Assuming � ¼ 1, the � functions in Eq. (3) may be used

to compute two integrations. The coupled kinetic equations
then reveal the existence of a new invariant, Jð!Þ ¼
n1ð!; zÞ þ n2ð!; zÞ, i.e., @zJ! ¼ 0. This invariant is
‘‘local’’ in the sense that it holds for each frequency !
individually. The invariant J! allows us to derive a closed
equation for the evolution of n1,

@zn1ð!; zÞ ¼ 1

2

Z G½J; n1�
j!�!1j d!1; (5)

where G½J; n1� ¼ �2

� ½J!1
� n1ð!1Þ�½J! � n1ð!Þ� �

½n1ð!1Þ � n1ð!Þ� � n1ð!1Þn1ð!Þ½J!1
� n1ð!1Þ � J! þ

n1ð!Þ�. Note that the singularity in Eq. (5) is apparent only
because the function G also vanishes for ! ¼ !1. This
equation conserves N1 ¼

R
n1ð!; zÞd! and exhibits a

H theorem for SlocðzÞ ¼
R
logfn1ð!Þ½J! � n1ð!Þ�gd!

(note that the conservation of energy E and momentum P
is implicitly verified through the invariant J!). The spec-
trum of local equilibrium that realizes the maximum of Sloc

given the constraint of conservation of N1 is obtained by
introducing the Lagrange’s multiplier 
,

nloc1 ð!Þ ¼ J!=2� ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð
J!=2Þ2

q
� 1�=
; (6)

while nloc2 ð!Þ ¼ J! � nloc1 ð!Þ. The local equilibrium
state (6) is a stationary solution of Eq. (5). The parame-
ter 
 is determined by the initial condition through J!,Rð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 
2J2!=4
p � 1Þd! ¼ 
ðN2 � N1Þ=2. If N1 ¼ N2,

one obtains 
 ¼ 0 and the equilibrium spectrum (6) re-
duces to nloc1 ð!Þ ¼ nloc2 ð!Þ ¼ J!=2. In the limit N1 � N2

(N1 � N2), 
 ! �1 (þ1), and nloc1 ð!Þ ! J!
ðnloc2 ð!Þ ! J!Þ. Contrary to the RJ distribution (4), the
local equilibrium state (6) preserves a memory of the initial
condition through the invariant J!.
Let us underline the deep difference between the local

invariant J! and the integral invariants investigated in
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FIG. 1 (color online). (a) Equilibrium spectrum of A1 obtained
by solving numerically the NLS equation (1) and (2) for � ¼ 1
(red or gray), � ¼ 1:1 (green or light gray) and corresponding
initial condition (dashed dark). The dotted blue line shows the
energy equipartition power law nRJj ð!Þ �!�2 (b) Local equi-

librium spectrum nlocð!Þ (red or gray) associated to the scalar
NLS equation (7), the dashed dark line shows the initial condi-
tion, � ¼ 0:1.
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Refs. [16,17] in line with the problem of integrability. Note
in this respect that the possible existence of a set of addi-
tional integral invariants, Qj ¼

R
’jð!Þn!d!, would still

lead to a (generalized) RJ distribution, nRJð!Þ ¼
T=½kð!Þ þP

j
j’jð!Þ �	�, 
j being the Lagrangian

multipliers of Qj [17]. In contrast, the local invariants J!
identified here lead to an equilibrium spectrum nlocð!Þ of a
fundamental different nature than nRJð!Þ.

The numerical integration of the kinetic Eq. (5) reveals
an irreversible evolution of n1ðz; !Þ towards the local
equilibrium state (6). As illustrated in Fig. 2, this anoma-
lous thermalization has been confirmed by the numerical
integration of the NLS equations (1) and (2), in which a
quantitative agreement has been obtained with the theory
[Eq. (6)], without any adjustable parameter.

The family of local equilibrium states (6) is parame-
trized by the function J!; i.e., for each J! we have a
different nlocj ð!Þ. Thus a set of distinct equilibrium states

can be reached by starting from different initial conditions:
in this loose sense the system exhibits a ‘‘multistable’’
behavior. The RJ distribution also belongs to this family;
i.e., if J! ¼ nRJ1 ð!Þ þ nRJ2 ð!Þ and 
 ¼ ð	2 �	1Þ=T,
Eq. (6) gives nlocj ð!Þ ¼ nRJj ð!Þ for � ¼ 1. This is consis-

tent with the fact that the RJ distribution is associated to the
maximum of S without the constraint J! ¼ const. As a
consequence of this ‘‘multistability,’’ the system would not
recover the initial state by sweeping � back and forth
between � ¼ 1 and � � 1.

The existence of the local invariant J! finds its origin in
degenerate resonances: the resonant conditions of energy
and momentum conservation expressed by W in Eq. (3)
exhibit the trivial solution !3;4 ¼ !1;2 for � ¼ 1.
Degenerate resonances occur in a great variety of nonlinear
wave systems. They occur in the resonant FWI, ið@z þ
v�1
j @tÞAj ¼ AkAlA

�
m þ AjjAjj2 þ �Aj

P
i�jjAij2, if v1 ¼

v4, v2 ¼ v3. The corresponding local equilibrium spec-

tra read nloc1;2ð!Þ ¼ J1;2ð!Þ=2� ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2½J1;2ð!Þ�2=4

q
�

1�=
, nloc3;4ð!Þ ¼ J1;2ð!Þ � nloc2;1ð!Þ, where J1;2ð!Þ refer to
local invariants.

We emphasize that anomalous thermalization also takes
place with nontrivial degenerate resonances. We illustrate
this aspect with the scalar NLS equation, whose integra-
bility is broken by the third-order dispersion

i@zA ¼ �@2t A� i�@3t Aþ jAj2A; (7)

where kð!Þ ¼ !2 � �!3. The kinetic equation of Eq. (7)
reveals the existence of the local invariant J! ¼ nðz;!Þ �
nðz; q�!Þ, where q ¼ 2=3�. It originates in the follow-
ing degenerate resonance: the frequencies (!, q�!)
resonate with any pair of frequencies (!0, q�!0), be-
cause kð!Þ þ kðq�!Þ ¼ q2=3. The corresponding lo-

cal equilibrium spectrum reads nlocð!Þ ¼ J!=2þ ½1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 
2J2!=4

p �=
. Breakdown of energy equipartition
manifests itself in a striking way since nlocð!Þ exhibits a
constant pedestal [Fig. 1(b)].
The kinetic theory developed above is valid in the

weakly nonlinear regime, i.e., U=E � 1, U ¼ H � E
being the nonlinear contribution to the energy. In the
following experimental and numerical study, we show
that anomalous thermalization is a robust phenomenon
whose signatures are preserved beyond the kinetic regime,
i.e.,U > E. We have designed an experiment in which left-
and right-handed circularly polarized optical waves propa-
gate in an isotropic (short-length ultra-low-birefringence)
single-mode optical fiber (spun fiber, see Fig. 3). Wave
interaction over a significant number of nonlinear lengths
L0 requires the use of high optical powers (400 W) which
brings our initial condition into the highly nonlinear re-
gime (U � E). Note that E and U become comparable at
large propagation distances [see inset of Fig. 4(d)]. The
evolution of the orthogonal polarization components A1

and A2 is governed by the vector NLS Eq. (1) and (2) with
� ¼ 1 and � ¼ 2 [12]. The partially coherent waves
launched into the fiber have different spectral widths.
The narrow (A1) spectrum (� 0:05 nm FWHM) is deliv-
ered by aQ switch Nd:YAG source emitting 40 ns pulses at
a rate of 30 kHz and a wavelength of 1064 nm. The wide
(A2) spectrum (�1:5 nm FWHM) is generated by passing
the Nd:YAG pulses through an annex polarization main-
taining fiber. To overcome the resulting time delay
(�13 ns) between the pulses A1 and A2, a time-resolved
measurement of the spectra has been implemented by
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FIG. 2 (color online). Equilibrium spectra obtained by solving
Eqs. (1) and (2) numerically (blue or dark gray) and correspond-
ing nlocð!Þ given by Eq. (6) (dashed red or gray). The dashed
green or light gray lines show the initial conditions. The insets
show the same plots in log scale. (� ¼ 1, N1=N2 ¼ 0:7, an
average over 105L0 has been taken once equilibrium was
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FIG. 3. Schematic representation of the experiment. Left- and
right-handed circularly polarized optical waves propagate in the
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using an acousto-optic time gating technique (see Fig. 3).
Short time slices of �20 ns have been cut into the two
pulses: their positions and peak powers have been adjusted
to obtain a spectral analysis of the waves carrying an
identical average power over the whole time slice.

Because of the presence of the dissipative Raman effect
[12], the effective interaction length is considerably re-
duced, so that only the transient regime of the anomalous
thermalization is experimentally accessible. We clearly
observed in the experiment that the narrow spectrum A1

undergoes a significant spectral broadening induced by its
interaction with A2 [see Fig. 4(a)]. Conversely, the wider
spectrum A2 remains almost unchanged from its interac-
tion with A1 [inset of Fig. 4(a)]. As illustrated in Fig. 4(b),
the experimental evolutions of the spectra are reproduced
in detail by the numerical simulations of Eqs. (1) and (2)
which include the propagation into the annex fiber and
neglect the Raman effect. The simulations allowed us to
explore the dissipationless asymptotic evolution of the
waves. They reveal the existence of an irreversible evolu-
tion of the fields A1;2 towards a stationary equilibrium state,

as illustrated by the saturation of the entropy production
process [Fig. 4(d)]. This nonlinear relaxation process is
reminiscent of the anomalous thermalization: (i) The non-
linear equilibrium state is characterized by two identical
spectra [see Fig. 4(c)], as expected from Eq. (6) for N1 ¼
N2, (ii) the equilibrium spectra reached for z > 500L0

violate the property of energy equipartition.
In summary, a theoretical, numerical, and experimental

study revealed the existence of a novel family of equilib-
rium states, which are of a fundamental different nature
than the usual thermodynamic equilibrium state. Given the

universality of the NLS and FWI equations, this work finds
applications in many branches of nonlinear science
[9,10,12–15]. In the context of multicomponent Bose-
Einstein condensates, the condition � ¼ 1 in Eqs. (1) and
(2) is automatically satisfied by simply considering a bi-
nary mixture of the same atomic species (same masses)
with different internal degrees of freedom.
This research was supported by the ANR-COSTUME
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FIG. 4 (color online). (a) Experimental power spectra at the
output of the spun fiber without cross-interaction [(� ¼ 0) in red
or gray] and with cross-interaction [(� ¼ 2) in blue or dark
gray]. (b) Corresponding numerical simulations of Eqs. (1) and
(2) at z ¼ 2:5L0. (c) Spectra of A1 and A2 at z ¼ 50L0 (the two-
wave spectra coincide for z > 15L0). (d) Evolution of the
entropy and of the kinetic E and nonlinear U energies. Spectra
are computed from an ensemble average and by discretizing a
wavelength span of 205 nm into 215 points (see procedure of
Ref. [18]).
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