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We present a family of algorithms, combining real-space renormalization methods and belief propa-

gation, to estimate the free energy of a topologically ordered system in the presence of defects. Such an

algorithm is needed to preserve the quantum information stored in the ground space of a topologically

ordered system and to decode topological error-correcting codes. For a system of linear size ‘, our

algorithm runs in time log‘ compared to ‘6 needed for the minimum-weight perfect matching algorithm

previously used in this context and achieves a higher depolarizing error threshold.
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Topologically ordered phases of matter can be used to
store and process quantum information in an inherently
robust way [1–5]. The ground state degeneracy depends on
the topology of the system. Quantum information stored in
this ground state manifold is protected from local pertur-
bations because virtual transitions require an order in
perturbation proportional to the linear size of the system.

At finite temperature, thermal excitations create pairs (or
larger sets) of particles of finite mass. These particles are
not confined and can freely diffuse on the surface. Bringing
all the particles to fuse in pairs returns the system into a
ground state. This ground state will correspond to the
original one only if the worldline of the particles has a
trivial homology: otherwise the particles have generated a
topological transformation that corrupts the information
stored in the ground space. Since particles appear in a finite

density (e�mass=ðkBTÞ) at any nonzero temperature, this in-
formation corruption happens on a time scale independent
of the system size [6].

To store the information for longer times, it becomes
necessary to keep track of the thermal particles and have
accurate knowledge of their worldline homology. This is
possible if the locations of the particles are measured
repeatedly on a time scale shorter or comparable to their
diffusion rate. It is also necessary to process the informa-
tion gathered from these measurements rapidly, i.e., to
infer the worldline homology from knowledge of the par-
ticle configuration at discrete times.

For some models, such as color codes [7], there is no
known efficient algorithm that can infer the particles’
worldline homology. Other models, such as Kitaev’s
code, admit an efficient algorithm—the minimum-weight
perfect matching algorithm (PMA) of Edmonds [8]—that
solves this problem in time proportional to ‘6 where ‘ is
the linear size of the system [4,9]. With such a scaling, it is
not possible to handle lattices of more than a few hundred
sites long in any reasonable time, ruling out any practical
application in this context. Additionally, this algorithm is
suboptimal. As we show below, decoding a topological
code reduces to minimizing the free energy over all ho-
mology classes of the system. The PMA minimizes the

energy instead, which can lead to additional corruption of
the information.
In this Letter, we present a real-space renormalization

group (RG) algorithm to accomplish this task in time log‘
(based on a parallel architecture, or ‘2 log‘ in series). The
algorithm is not exact and makes use of mean-field equa-
tions implemented as a belief propagation algorithm (see
[10]). Despite these approximations, our algorithm
achieves a successful decoding of Kitaev’s model up to a
tolerable noise threshold (diffusion rate) that exceeds the
one obtained by the PMA. Our algorithm is suitable for a
large class of topologically ordered systems including
color codes and can be adapted to surfaces of arbitrary
geometries and topologies.
Our algorithm is also of use for fault-tolerant quantum

information processing schemes based on topological
error-correcting codes [4,11–13]. This method achieves a
high (0.75%) fault-tolerant quantum computing error
threshold by making use of some of the ideas outlined
above to encode and manipulate the quantum information
in a planar architecture, but do not require a topologically
ordered phase of matter. In this setting, our algorithm
becomes an efficient decoder, inferring the most likely
logical recovery given the error syndrome.
Finally, our algorithm should be of interest in condensed

matter more generally because it provides a numerical
method to study topological to quenched disorder phase
transitions. We note that real-space RG methods have been
devised for systems with topological order [14], but to our
knowledge they do not apply in the presence of disorder.
Toric code.—In the following, we focus on Kitaev’s toric

code. It consists of a ‘� ‘ two-dimensional square lattice
embedded on a torus. Qubits are located on the edges of the
lattice. For each site s, define an operator As, and for each
plaquette p (site of the dual lattice), define an operator Bp,

by

As ¼
O

q2nðsÞ
Xq ; Bp ¼ O

q2nðpÞ
Zq ; (1)

where nðsÞ consists of the 4 neighboring qubits of site s,
nðpÞ of the 4 neighboring qubits of plaquette p, and X and
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Z are Pauli matrices. We refer to these operators collec-
tively as stabilizer generators.

The toric code space is the ground state manifold of the
Hamiltonian:

H ¼ �X

s

As �
X

p

Bp: (2)

Observe that the stabilizer generators all commute with one
another. Thus, the ground space ofH is their simultaneous
þ1 eigenspace. This implies that the stabilizer group,
formed of arbitrary products of its generators fAs; Bpg,
acts trivially on the code space

Ojc GSi ¼ jc GSi; O 2 hfAs; Bpgi: (3)

Because they consist of unit loops, one can view the Bp

(As) as generators of the group of contractible loops on the
(dual) lattice. Thus, any contractible loop of Z (X) opera-
tors on the (dual) lattice acts trivially on the code space. In
fact, any operator that maps the code space to itself must
consist of closed loops of X (or Z) operators because, in
order to commute with all As (Bp), they must intersect

every site (plaquette) an even number of times. We con-
clude that only noncontractible loops can map the ground
space to itself in a nontrivial manner. More specifically, for
two noncontractible loops on the lattice, L1 winding
around the hole and L2 winding around the body of the
torus, and two noncontractible loops on the dual lattice, L0

1

winding around the body and L0
2 winding around the hole,

these operators are

�Z i ¼
Y

q2Li

Zq; �Xi0 ¼
Y

q2L0
i

Xq: (4)

One can easily verify that these logical operators com-
mute with the stabilizer group and obey the canonical
commutation relations ½ �Xi; �Xj� ¼ ½ �Zi; �Zj� ¼ 0 and �Xi

�Zj ¼
ð�1Þ�ij �Zj

�Xi. Thus, these four loop operators form a Pauli

algebra of 2 effective qubits encoded in the topological
degrees of freedom of the ground space. The different
combinations of these operators generate the 16 different
homology classes that need to be distinguished in order to
prevent the corruption of the information.

Errors and decoding.—To characterize the error-
correcting capacities of this code, we model the noise by
the depolarizing channel. This is a noise model where each
qubit independently gets randomized with some probabil-
ity q:

�!ð1�qÞ�þq
I

2
¼ ð1�pÞ�þp

3
ðX�XþY�YþZ�ZÞ;

(5)

where p ¼ 3q
4 . As seen from the right-hand side of Eq. (5),

we can equivalently describe this noise model as acting
trivially on the qubit with probability 1� p, or otherwise
randomly applying one of the three Pauli operators.

Because it anticommutes with its two neighboring pla-
quette operators Bp, an X error will add two units of energy

to the system. We say that it causes two plaquette defects,
which can be interpreted as particles. Similarly, a Z error
creates a pair of site defects and a Y error creates a pair of
both defects. In the case of multiple errors, the defects
appear only at the end points of error chains. Thus, distinct
error chains with the same end points cannot be distin-
guished given the defect pattern they generate. If the union
of two such error chains forms a contractible loop, their
action on the code space is identical; i.e., their product
belongs to the group of contractible loops. Such errors are
said to be degenerate. If, on the other hand, the union of
two such error chains forms a noncontractible loop, they
have a distinct effect on the code space. Thus, the decoding
algorithm must somehow decide the most likely homology
class of the error based on the knowledge of the defect
pattern, also called the error syndrome.
We now show how this inference problem can be

mapped to a statistical mechanics problem [4]. Associate
to each error chain c an energy EðcÞ ¼ Jjcj þ J0ndefectðcÞ.
Here, jcj denotes the weight of the error chain, i.e., the
number of physical qubits on which it acts nontrivially. The
second term ndefectðcÞ counts the number of mismatches
between defects and end points of c. The ratio J0=J enc-
odes the level of confidence of our defect detection. Then,
given the depolarizing error model, the probability of an

error chain c given a fixed defect pattern is PrðcÞ ¼ e��EðcÞ
Zð�Þ ,

where the partition function is Zð�Þ ¼ P
ce

��EðcÞ and the
Nishimori inverse temperature is given by

� ¼ 1

J
ln
3ð1� pÞ

p
: (6)

In the following, we take J0 ! 1, meaning that we only
consider error chains c in perfect agreement with the
observed defect pattern.
The decoder’s task then consists in evaluating the proba-

bility of each of the 16 homology classes �, generated
from all combinations of the 4 noncontractible loops:

Prð�Þ ¼ X

c2�

PrðcÞ: (7)

We can express this probability in terms of thermodynam-

ical quantities. Let Prðcj�Þ ¼ PrðcÞ
Prð�Þ I�ðcÞ denote the proba-

bility of an error string c conditioned on homology class�,
where I� is the indicator function of �. The entropy and
average energy associated with this conditional probability
are given by Sð�Þ ¼ �P

c2� Prðcj�Þ ln Prðcj�Þ and
Eð�Þ ¼ P

c2� Prðcj�ÞEðcÞ, respectively. In terms of the
Gibbs free energy �Fð�Þ ¼ �Eð�Þ � Sð�Þ, we obtain

Prð�Þ ¼ e��Fð�Þ

Zð�Þ : (8)

Thus, we see that the optimal decoding consists in choos-
ing the homology class � that minimizes the free energy.
In those terms, we can clarify why the PMA is subopti-

mal. By finding the shortest error chain compatible with the
error syndrome, PMA minimizes energy rather than free
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energy. In other words, it operates at zero temperature
rather than the Nishimori temperature. Figure 1 (left)
illustrates a situation where the entropic term influences
the decoding. Namely, two distinct homology classes
(dashed lines and full lines) have the same minimum
energy configuration, but one of them has higher entropy
because it contains 4 degenerate errors, and therefore
should be chosen for the decoding. In that case, the PMA
has a smaller success probability than a free-energy mini-
mization. Repeating this error pattern leads to situations
where the difference in success probability can be arbi-
trarily large.

Another limitation of the PMA is that it must consider X
and Z errors independently. However, because a Y error is
the product of anX and a Z error, the two types of errors are
highly correlated in a depolarizing model. Figure 1 (right)
illustrates a situation where these correlations influence the
decoding. Specifically, the top and bottom figures illustrate
two possible error chains for a defect pattern. If the X and Z
errors are treated as independent, then the upper configu-
ration has lower energy. Taking into account the correla-
tions of the depolarizing channel, on the other hand, favors
the lower configuration. Again, more elaborate examples
lead to situations with highly different success probabil-
ities of the two methods.

New approach.—The main idea behind the approach we
propose is to approximate the toric code by a concatenated
code. A concatenated code is constructed by encoding, say,
one qubit into a code block of n qubits (n should be
relatively small), and then encode each of these qubits
into n qubits, etc. Clearly, the final number of qubits
used is exponential in the number of concatenations, but
the failure probability decreases doubly exponentially.

Concatenated codes can be efficiently and optimally
decoded using a recursive algorithm [15]. First, we com-
pute the probability of each logical operator (or homology
class for topological codes) of the codes appearing in the
last concatenation step. As in the previous section, this
problem maps to the evaluation of a free energy for a
system of finite size n, so can be solved by brute force.
These probabilities become the noise model for the
second-to-last layer of codes, replacing the depolarizing

channel. In turn, these code blocks can be decoded by brute
force. This process is repeated until we reach the top layer
of the code, providing a probability distribution for the net
error affecting encoded qubits.
One can view each step of this decoding process as a

RG transformation. The noise model evolves from one
concatenation level to the next based on some simple
procedure. The transformation is not homogenous in space
and time, reflecting the inhomogeneity of the observed
error syndromes.
It is noteworthy that all the codes appearing in a given

concatenation layer can be decoded simultaneously.
Hence, this decoding scheme is tailored for parallelization
and therefore has a running time proportional to the num-
ber of concatenation layers, i.e., scaling logarithmically
with the number of qubits. The time to decode a single
block scales exponentially with n (small).
The toric code is not truly a concatenated code but can

be viewed as one if we allow the different code blocks of a
given concatenation layer to share qubits, i.e., to overlap
with one another. One possible way of breaking the toric
code into overlapping code blocks is illustrated on the left-
hand side of Fig. 2. The dashed edges represent qubits that
are shared by two neighboring code blocks.
Each of these code blocks is a small open-boundary

topological code, so it can be decoded by brute force.
The outcome is a probability distribution for the two
logical qubits encoded in this small code. This RG proce-
dure, schematically illustrated at Fig. 2, is the core idea
behind our method. It maps an error model on 8 qubits to a
renormalized error model on 2 qubits. The procedure is
repeated by joining 4 pairs of such renormalized qubits to
obtain a new block of 8 qubits. At the final iteration, we
obtain the error distribution of the two qubits encoded in
the toric code.
Results and improvements.—We use Monte Carlo sam-

pling to characterize the decoder’s performance. The basic
RG decoder described above achieves a depolarizing error
threshold p� 7:8% compared to p� 15:5% obtained us-
ing the PMA [9,16]. This threshold can be significantly
improved by imposing self-consistent conditions on the
qubits that are shared between blocks. Suppose qubit Q
is shared between a block on the left and a block on the
right. Let DL and DR denote the defect pattern on the left
and right code block, respectively. Each block will assign a
conditional error probability to Q PrðEQjDRÞ and

PrðEQjDLÞ that are different in general. To improve our

FIG. 1 (color online). Simple defect patterns illustrating the
importance of the entropic term or error degeneracy (left) and
correlations of errors (right).

FIG. 2. The 12 qubits that constitute a code block in the
concatenation approximation. They form a surface code.
Dashed links represent qubits shared between blocks.
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decoding algorithm, we impose that all such conditional
probabilities agree. This leads to a set of mean-field self-
consistency equations that we solve by a belief propagation
algorithm. We obtain a threshold p� 15:2%, quite com-
parable to the one of the PMA.

Our algorithm is very flexible and allows for multiple
trade offs between noise suppression and running time.
Note that the running time of all the variations we present
scales like log‘, but the constant prefactors greatly differ.
For instance, we can replace the 2� 2 code block of the
RG scheme by a 2� 1 code block. This slightly deterio-
rates the threshold to p� 12:9%, but speeds up the decod-
ing by a factor of a few hundred. We can also choose to
ignore the correlations between X and Z errors and decode
them separately as bit-flip and phase-flip channels. This is
a more direct comparison with the PMA. Our method
yields a threshold of p� 9% with 2� 2 RG blocks and
p� 8:2% with 2� 1 RG blocks (see Fig. 3), compared to
p� 10:3% for the PMA, and speeds up our RG algorithm
by a factor of a few thousands. Even without paralleliza-
tion, this enables us to decode lattices a thousand sites
long, cf. Fig. 3.

We can further improve these thresholds by combining
the RG scheme with the sparse code decoder we presented
in [17]. We first use the sparse code decoder with the full
(correlated) error model to update the X and Z error
probabilities on each physical qubit. We then use the RG
scheme to decode X and Z errors independently. The
threshold achieved is p� 16:4% (see Fig. 4), exceeding
the one of the PMA.

Conclusion.—We presented a real-space RG method to
decode the quantum information stored in the topological
degrees of freedom of a system in the presence of noise.
Our method is very versatile, faster than existing schemes,
and tolerates a higher noise rate. It is also the first known
algorithm to decode the color code. Beyond its immediate
implication to quantum information, it opens the door to
new numerical methods to study topologically ordered
systems with quenched disorder (see [18] for a similar

combination of RG and belief propagation in the context
of condensed matter physics).
We thank Jim Harrington for many stimulating discus-

sions. This work was supported in part by MITACS,
NSERC, and FQRNT. Computational resources were pro-
vided by the RQCHP.

[1] A. Y. Kitaev, in Proceedings of the Third International
Conference on Quantum Communication and Measure-
ment, FujiHakone, 1996, edited by O. Hirota, A. S.
Holevo, and C.M. Caves (Plenum, New York, 1997),
p. 181.

[2] A. Y. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003).
[3] M.H. Freedman, A. Kitaev, M. Larsen, and Z. Wang, Bull.

Am. Math. Soc. 40, 31 (2002).
[4] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math.

Phys. (N.Y.) 43, 4452 (2002).
[5] S. Bravyi, Phys. Rev. A 73, 042313 (2006).
[6] Z. Nussinov and G. Ortiz, Phys. Rev. B 77, 064302 (2008).
[7] H. Bombin and M. Martin-Delgado, Phys. Rev. Lett. 98,

160502 (2007).
[8] J. Edmonds, Can. J. Math. 17, 449 (1965).
[9] J. Harrington, Ph.D. thesis, Caltech, 2004.
[10] J. S. Yedidia, Advanced Mean Field Methods: Theory and

Practice (MIT Press, Cambridge, MA, 2001), p. 21.
[11] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98,

190504 (2007).
[12] H. Bombin and M. Martin-Delgado, J. Phys. A 42, 095302

(2009).
[13] A. Fowler, A. Stephens, and P. Groszkowski, Phys. Rev. A

80, 052312 (2009).
[14] M. Aguado and G. Vidal, Phys. Rev. Lett. 100, 070404

(2008).
[15] D. Poulin, Phys. Rev. A 74, 052333 (2006).
[16] A. Honecker, M. Picco, and P. Pujol, Phys. Rev. Lett. 87,

047201 (2001).
[17] D. Poulin and Y. Chung, Quantum Inf. Comput. 8, 986

(2008).
[18] E. Bilgin and D. Poulin, arXiv:0910.2299.

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

10 2

10 1

100

Bit Flip Channel

D
ec

od
er

Fa
ilu

re
Pr

ob
ab

ili
ty

FIG. 3 (color online). Failure probability as a function of bit-
flip probability p for a ‘ ¼ 8; 16; 32; . . . ; 1024 toric code de-
coded using the 2� 1 block RG algorithm with 3 belief propa-
gation rounds. Each data point is 104 trials.
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FIG. 4 (color online). Failure probability as a function of
depolarizing strength p for a ‘ ¼ 16, 32, 64, and 128 toric
code decoded using the 2� 2 subcode RG algorithm with three
rounds of belief propagation with prior physical decoding.
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