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We ask whether there are fundamental limits on storing quantum information reliably in a bounded

volume of space. To investigate this question, we study quantum error correcting codes specified by

geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For

these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d,

and the number of particles n. It is shown that kd2 ¼ OðnÞ where the coefficient in OðnÞ depends only on

the locality of the constraints and dimension of the Hilbert spaces describing individual particles. The

analogous tradeoff for the classical information storage is k
ffiffiffi
d

p ¼ OðnÞ.
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Understanding the limits imposed on information pro-
cessing by the laws of physics is a problem of fundamental
and practical importance. A variety of hardware-
independent limitations on the power of computers arising
from thermodynamics, quantum mechanics, and relativity
have been identified recently [1–3].

In this Letter we derive a fundamental upper bound on
the amount of quantum information that can be stored
reliably in a given volume of a 2D space. This bound stems
from geometric locality of quantum operations used to
detect and correct errors as well as peculiar features of
quantum entanglement in 2D systems. We shall model the
information storage using the framework of quantum error
correcting codes [4]. Specifically, we consider a system of
n finite-dimensional quantum particles (qudits) occupying
sites of a 2D lattice �. For the sake of clarity we shall
consider a regular square lattice of size

ffiffiffi
n

p � ffiffiffi
n

p
with open

boundary conditions, although our results can be easily
extended to more general 2D lattices and periodic bound-
ary conditions. We shall focus on codes for which the code
space C spanned by encoded states can be represented as a
common eigenspace of geometrically local pairwise com-
muting [5] projectors �1; . . . ;�m such that C ¼
fjc i : �ajc i ¼ jc i for all ag. The code space C can be
regarded as the ground-state subspace of a local gapped
Hamiltonian

H ¼ � Xm

a¼1

�a; �a�b ¼ �b�a: (1)

Such a code is able to encode k ¼ log dimC logical qubits.
Let d be the distance of the code [6]. Our main result is an
upper bound

k � cn

d2
: (2)

Here c is a constant coefficient that depends only on local-
ity of the projectors defining the code space and dimension
of the Hilbert space describing individual particles. The

bound Eq. (2) is tight up to a constant factor since 2D
surface codes [7] achieve the scaling kd2 � n for any given
n and d [8]. The bound Eq. (2) can be put in sharp contrast
to the existence of good stabilizer codes [9] for which
k=n � c1 and d=n � c2 for some constants c1; c2. Our
result implies that the distance of 2D quantum codes
with a nonzero rate k=n is upper bounded by a constant
independent of n. It also implies that the distance of any 2D
quantum code is at most Oð ffiffiffi

n
p Þ extending the results of

[10] beyond stabilizer codes.
The motivation for our work stems from several sources.

First, quantum error correcting codes provide toy models
for how topological quantum order can emerge in the
ground states of 2D spin systems with short-range inter-
actions. For example, string-net models introduced by
Levin and Wen [11] are described by Hamiltonians involv-
ing a sum of commuting projectors; see [12]. The ground
state of string-net models defined on a torus (or higher
genus surface) has topological degeneracy and can be re-
garded as a code space of a quantum code. Alternatively,
the code space can be chosen as an excited subspace
corresponding to a particular configuration of excitations
(anyons)—the approach adopted by Kitaev in the topologi-
cal quantum computing scheme [13]. In this case the code
distance is proportional to the distance between anyons
while the bound Eq. (2) asserts that the number of encoded
qubits is at most a constant fraction of the number of
anyons.
Second, one can interpret Eq. (2) as a tradeoff between

the storage capacity and stability. The issue of stability has
to be addressed if one tries to simulate the ideal
Hamiltonian Eq. (1) in a lab; see [14–16] for some experi-
mental and theoretical proposals for implementation of
topological quantum order models. The best one can
hope for is to approximate individual interactions �a

with some constant precision � independent of the total
number of particles n. A natural question is, how does it
affect the ground-state degeneracy and the spectral gap
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above the ground state? It was recognized in [13] that the
distance d plays a crucial role in the stability analysis. By
definition of the distance, a weak local perturbation to H
lifts the degeneracy of the ground state only in the order
�ðdÞ of perturbation theory [13]. A quantitative relation
between the zero-temperature stability and the distance has
been recently established for Hamiltonians composed of
commuting projectors in [17]. The authors of [17] proved
the existence of a constant threshold value of the precision
� below which the ground-state degeneracy is not lifted up
to exponentially small errors and the spectral gap does not
close provided that the distance d scales as a positive
power of n.

Assuming that the distance d is infinite in the thermody-
namic limit, the tradeoff Eq. (2) implies that the amount of
quantum information stored per unit volume, k=n � c=d2,
goes to zero in the thermodynamic limit. This suggests a
possible connection between our results and the celebrated
holographic principle [18] asserting that the amount of
information that can be encoded in a volume of space M
scales as the area of the boundary of M. In fact, our main
technical tool that we call disentangling lemma asserts that
for any encoded state (even for the maximally mixed) the
reduced state of any finite region M can be regarded as a
pure state entangled with the rest of the lattice by a uni-
tary operator acting only on the boundary of M. Thus only
those degrees of freedom located near the boundary of M
contribute to the informational content of M.

Generalizing our techniques to quantum codes defined
on a D-dimensional lattice yields [19]

k � cn

d�
; � ¼ 2

D� 1
: (3)

It should be emphasized that throughout this Letter the
geometric locality of the constraints �a is defined using
the standard Euclidean geometry [20]. At the same time,
the bound Eq. (2) can be violated for non-Euclidean ge-
ometry. For example, Ref. [21] constructed surface codes
on general planar graphs with a constant rate k=n and the
distance d� logn; see also [22]. Also, it is known that
stabilizer codes with k ¼ 1 and d� ffiffiffi

n
p

logn can be con-
structed on triangulations of some 4D Riemannian sur-
faces; see Theorem 12.4 in Ref. [23].

One can also ask about the analogue of the tradeoff
Eq. (2) for classical information storage. In Ref. [19] we
prove that any 2D classical code specified by geometrically
local constraints obeys the bound

k � cnffiffiffi
d

p : (4)

Here c is a constant depending only on the dimension of
individual particles and locality of the constraints specify-
ing the code. Using the mapping from 1D cellular automa-
tons to 2D classical codes from Refs. [24,25] we construct
a family of codes with k� ffiffiffi

n
p

and d� n0:8, which is quite
close to saturating the bound Eq. (4).

Definitions and notations.—We shall assume that the
locality of the projectors �a can be characterized by a
constant interaction range w such that the support of any
projector �a can be covered by a square block of size
w� w. Let

� ¼ Ym

a¼1

�a (5)

be the projector on the code space C. A state � is called an
encoded state if and only if it has support on the code space
C; that is,�� ¼ �� ¼ �. We shall say that a regionM �
� is correctable if and only if there exists an error correc-
tion operation (a trace preserving completely positive map)
R that corrects the erasure of all particles inM; that is, for
any encoded state � one has

R ðTrM�Þ ¼ �: (6)

By definition of the distance any region of size smaller than
d is correctable.
We shall use the notation �M ¼ �nM for the com-

plement of a region M. For any region M � � and for
any fixed state � let SðMÞ ¼ �Tr�M log�M be the
von Neumann entropy of the reduced density matrix �M.
Using techniques from Refs. [26,27] one can easily show
that the error correction condition Eq. (6) has the following
entropic counterpart.
Fact 1.—If a region M is correctable, then

SðMj �MÞ ¼ �SðMÞ (7)

for any encoded state �. Here SðMj �MÞ ¼ SðM �MÞ � Sð �MÞ
is the entropy of M conditioned on �M.
(The proof can be found in the extended version of this

Letter [19].)
We begin by sketching the steps leading up to our main

result, the bound in Eq. (2). Let R be the largest integer m

B

B
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FIG. 1 (color online). The partition of the lattice � ¼ ABC.
Each individual block in A and B must be correctable. The
region C provides separation between adjacent blocks in A and
adjacent blocks in B. It guarantees that the entire regions A and B
are correctable. The entropic error correction condition implies
that SðAjBCÞ ¼ �SðAÞ and SðBjACÞ ¼ �SðBÞ for the maxi-
mally mixed encoded state. It yields k ¼ SðABCÞ � SðCÞ.
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such that any square block of size m�m is correctable.

Note that R is at least
ffiffiffi
d

p
by the definition of the distance.

Consider a partition of the lattice � ¼ ABC shown in
Fig. 1. The regions A andB consist of blocks of size R� R,
so that each individual block in A and B is correctable. The
total number of blocks is roughly n=R2. The regions A and
B have small corner regions taken out which make up the
region C. The purpose of the region C is to provide a
sufficiently large separation between the neighboring
blocks in A and between the neighboring blocks in B
such that any projector�a overlaps with at most one block
in A and with at most one block in B. It guarantees that the
entire regions A and B are correctable (see lemma 2 be-
low). Applying Eq. (7) to regions A and B yields

SðAjBCÞ ¼ �SðAÞ and SðBjACÞ ¼ �SðBÞ (8)

for any encoded state. Let � be the maximally mixed
encoded state such that k ¼ Sð�Þ. Using Eq. (8) we
get Sð�Þ¼SðBCÞþSðAjBCÞ¼SðBCÞ�SðAÞ�SðCÞ þ
SðBÞ�SðAÞ. Similarly, Sð�Þ ¼ SðACÞ þ SðBjACÞ ¼
SðACÞ � SðBÞ � SðCÞ þ SðAÞ � SðBÞ. Adding together
the two bounds yields

k ¼ Sð�Þ � SðCÞ � jCj � n

R2
: (9)

The second step in the proof which may be less intuitive is
to show that R � cd for some constant c depending only
on locality of the constraints. In other words, we need to
prove that any block of size roughly d� d is correctable.
Our main technical tool will be the disentangling lemma
characterizing entanglement properties of the maximally
mixed encoded state proportional to the projector on the
code space �. We shall prove that any correctable region
M can be completely disentangled from the rest of the

lattice by acting only on the boundary of the region (see
lemma 1 below). The disentangling operation leaves the
region M in a pure state. For any region M let @M be the
boundary of M, that is, the region covered by the supports
of all projectors �a that couple M with �M. The following
result is a simple corollary of the disentangling lemma.
Corollary 1.—LetM be any correctable region. Consider

any regions B � M andC � �M such that BC is correctable
and @M � BC. Then M [ C is also correctable.
The idea of the proof is illustrated in Fig. 2. Let us apply

corollary 1 to a square block M of size R� R. Choose B
and C as layers of thickness w adjacent to the surface ofM
such that B � M and C � �M; see Fig. 2. Since all the
projectors�a have size at mostw, the condition @M � BC
is satisfied. Note that jBCj ¼ cwR for some constant c. If
jBCj< d, then BC is correctable and corollary 1 would
imply that M [ C is correctable. But M [ C is a square
block of size larger than R, which contradicts the choice of
R. Thus jBCj � d; that is, R � d=ðcwÞ � d. Substituting
this bound into Eq. (9) completes the proof of Eq. (2).
In the rest of the Letter we state and prove the disen-

tangling lemma.
Lemma 1 (disentangling).—Let M � � be any correct-

able region. Suppose that @þM ¼ ð@MÞ \ �M is also a
correctable region. Then there exists a unitary operator
U@M acting only on the boundary @M such that

U@M�Uy
@M ¼ j�Mih�Mj �� �M; (10)

for some pure state j�Mi and some projector � �M.
It follows from Eq. (10) that U@M disentangles any

encoded state jc i 2 C, that is, U@Mjc i ¼ jc ini � jc outi
where jc ini ¼ j�Mi does not depend on jc i. Let us also
emphasize that lemma 1 holds for any spatial dimension.
Proof of the disentangling lemma.—Consider a partition

� ¼ ABCD, where A ¼ Mn@M, B ¼ M \ ð@MÞ, C ¼
�M \ ð@MÞ, D ¼ �Mn@M. By definition,M ¼ AB and �M ¼
CD; see Fig. 2. Using Eq. (5) one can represent � as a
product of commuting projectors acting on MC and CD.
The results of Ref. [28] imply that the Hilbert space of C
can be decomposed as H C ¼ L

xH C0
x
�H C00

x
such that

� ¼ L
x�

ðxÞ
MC0

x
��ðxÞ

C00
xD
, where �ðxÞ

MC0
x
and �ðxÞ

C00
xD

are pro-

jectors. Since C is correctable, the direct sum over x
contains exactly one term—otherwise it would be possible
to distinguish some orthogonal encoded states by measur-
ing x which can be done locally in C. Thus one can
subdivide C into two subsystems C ¼ C0C00 such that

� ¼ UCð�MC0 ��C00DÞUy
C: (11)

Using Eq. (5) again one can represent � as a product of
commuting projectors acting on AB and B �M. Applying the
same arguments as above one arrives at

� ¼ UBð�AB0 ��B00 �MÞUy
B; (12)

where B ¼ B0B00 is a partition of B into two subsystems
and �AB0 , �B00 �M are some projectors. Define a new pro-

C DA B

FIG. 2 (color online). Extending the correctability from a
region AB to a larger region ABC. The disentangling lemma
implies that any encoded state � can be represented as � ¼
UBCð�AB � �CDÞUy

BC, where �AB is a pure state independent of

�. It implies TrC�CD ¼ �D and thus �A � �D ¼ Eð�Þ, where E
is an ‘‘error’’ erasing the region BC. If BC is correctable, one
must be able to reconstruct � starting from Eð�Þ. Since �AB is
known, it means that one can reconstruct � starting from �D.
Therefore ABC is correctable.
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jector�0 ¼ Uy
BU

y
C�UBUC. Combining Eqs. (11) and (12)

one concludes that �0 ¼ �AB0 ��B00C0 ��C00D for some
projector �B00C0 . The error correction condition Eq. (6) for
M implies that �AB0 must be one-dimensional, i.e.,

�0 ¼ j�AB0 ih�AB0 j ��B00C0 ��C00D (13)

for some pure state j�AB0 i. As for the projector �B00C0 , the
error correction condition Eq. (6) forM and C (separately)
implies that�B00C0 is a code space of a code that corrects all
errors on B00 and all errors on C0. The no-cloning principle
implies that �B00C0 must be one-dimensional, that is,

�0 ¼ j�AB0 ih�AB0 j � j�B00C0 ih�B00C0 j ��C00D (14)

for some pure state j�B00C0 i. Thus the desired unitary

operatorU@M can be chosen asU@M ¼ WB00C0Uy
BU

y
C, where

WB00C0 is an arbitrary unitary operator disentangling the
state j�B00C0 i. j

Our final lemma asserts that the union of two correctable
regions M1 and M2 that are sufficiently far apart is also
correctable.

Lemma 2.—Let M1;M2 � � be any correctable regions
such that any projector �a overlaps with at most one of
M1;M2. Suppose that @þM1 is also correctable. Then the
region M1 [M2 is correctable.

This statement is a simple corollary of the disentangling
lemma; see Ref. [19] for the formal proof.

In conclusion, we have shown that there exists a funda-
mental limit on the amount of quantum information that
can be encoded in a given volume of 2D lattice with a given
minimal distance. Our work opens up possible connections
between the holographic principle and error correction that
are worthy of further investigations.
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