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We present a small-signal wave propagation theory on matter-wave superradiant scattering. We show, in

a longitudinally excited condensate, that the backward-propagating, superradiantly generated optical field

propagates with ultraslow group velocity and that the small-signal gain profile has a Bragg resonance. We

further show a unidirectional suppression of optical superradiant scattering, and explain why matter-wave

superradiance can occur only when the pump laser is red detuned. This is the first analytical theory on field

propagation in matter-wave superradiance that can explain all matter-wave superradiance experiments to

date that used a single-frequency, long-pulse, red-detuned laser.
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Coherent matter-wave superradiance is the matter-wave
analog of Dicke optical superradiance [1] and it was first
observed in an ensemble of Bose-Einstein condensed 23Na
atoms under a pulsed-laser excitation [2]. When a single,
far red-detuned, long optical pulse impinges along the
short axis of a cigar-shaped Bose-Einstein condensate, it
was found that multiple condensates of different momenta
formed a highly regular and distinctive unidirectional (with
respect to pump laser direction) scattering pattern. It is now
understood that these unidirectional, matter-wave super-
radiant scattering patterns are critically dependent on the
geometry and spatial distribution of the condensate.

In a seminal study, Inouye et al. [2] explained the
observed matter-wave scattering pattern as the result of
spontaneous and stimulated Rayleigh superradiant scatter-
ing. Three key elements form the core of this Rayleigh
superradiant scattering theory [2]: (1) spontaneous and
subsequent stimulated Rayleigh scattering along the high
gain (the long axis of the condensate) direction, (2) scat-
tered atoms interfere with the local condensate and form a
matter-wave grating that further enhances stimulated
Rayleigh scattering, and (3) matter-wave amplification.

Following the work of Inouye et al. [2], many experi-
mental studies of matter-wave superradiance have lead to
the observation of the short-pulsed, bidirectional super-
radiant effect [3], the Raman superradiant effect [4,5],
and matter-wave amplification employing a long-pulse
forward superradiant effect to provide a gain medium for
an injection-seeded condensate [6–8]. In addition, many
theoretical studies [9–14] have also provided substantial
insight and understanding of this light-matter-wave inter-
action process which is of significant importance to the
fields of cold atom physics, cold molecular physics, non-
linear optics, and quantum information science.

Despite numerous theoretical efforts several important
outstanding questions about the generation and propaga-
tion of the electromagnetic field in matter-wave superra-
diant scattering processes remain unresolved. Two of the

most important questions are the following. (1) What are
the propagation dynamics of the generated field? (2) Why
is there no clear matter-wave superradiant scattering when
the laser is detuned to the blue (high energy) side of the
one-photon transition?We note that all previous theoretical
studies focused on obtaining the gain of the generated field
as a function of the pump-field pulse duration (i.e., a rate
equation picture). While some propagation properties have
been investigated in several numerical studies [13–18], to
date there has been no analytical study of the propagation
dynamics of the generated light field. In addition, many
theoretical studies reported in the literature assume adia-
batic elimination of the upper electronic state while taking

FIG. 1 (color online). (a) Schematic drawing of longitudinally
excited matter-wave superradiant scattering of a Bose conden-
sate (only the n ¼ 0, þ1 orders are shown). We define the
scattering in the direction of the pump laser as the positive order
of scattering. (b) Schematic drawing of frequency-momentum
dispersion and matter-optical wave-vector matching for collec-
tive atomic recoil motion (see text).
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into account a photon relaxation rate �photon¼c=L�
1012 Hz [13–19]. However, in all experiments reported to
date (except one [20]), the one-photon detuning is less than
2� 1010 Hz, and this is inconsistent with any attempt to
adiabatically eliminate the upper electronic state using
�photon � 1012 Hz.

In this Letter, we present a small-signal theory that
provides substantial insight into the propagation dynamics
of the Rayleigh superradiant-scattering-generated electro-
magnetic field. In particular, we study a longitudinal exci-
tation geometry where a pump laser pulse impinges and
propagates along the long axis of an elongated condensate.
In this excitation geometry, we assume that the process
begins when spontaneous Rayleigh scattering generates a
very weak initial field [21] propagating backward with
respect to the pump laser [Fig. 1(a), red wavy arrow.
Note that throughout this work backward propagation al-
ways means with respect to the pump laser]. We point out
that it is essential to include Doppler effects. Indeed, it is
the propagation phase-matching and Doppler effects that
give rise to the laser detuning effect, the Bragg resonant
enhancement of superradiant scattering gain, and ultraslow
propagation. Specifically, we show that in the initial
growth regime (1) the superradiantly generated field travels
backward with respect to the pump field, (2) it travels with
an ultraslow group velocity, (3) it has a small-signal gain
coefficient only when the matter-optical wave phase
matching is achieved by tuning the pump laser to the red
side of the one-photon electronic transition, and (4) a
resonant enhancement of superradiant scattering gain oc-
curs when the frequency difference between the pump and

the superradiantly generated fields satisfies a Bragg condi-
tion. In addition, the generated field retains full quantum
fluctuation characteristics and it grows quadratically as a
function of the atom number density. To the best of our
knowledge no analytical theory in the literature on field
propagation is able to accurately predict the generated
optical fields in a matter-wave superradiant scattering pro-
cess, and none of the effects shown here have been pre-
dicted theoretically before.
We begin by investigating the dynamics of a Rayleigh

spontaneously-generated weak field propagating backward
in a gain medium created by a long optical pump pulse. In
our coordinate system the long pump pulse travels in the
�x̂ direction. Photons are generated along the path of the
pump field by spontaneous processes. However, only pho-
tons generated at x ¼ 0 (left side of condensate of length
L) traveling backwards (þx̂ direction) with respect to the
pump pulse along the long axis of the condensate will
experience maximum gain by the stimulated process as
they propagate to x ¼ L [red wavy arrow in Fig. 2(a)]. We
focus on the weak-pumping, small-signal growth regime
where only the first-order Rayleigh-scattered condensate is
important. In this spontaneous and subsequent stimulated
emission process, the superradiantly scattered condensate
must absorb one photon from the pump laser field EL (�x̂
direction) and emit one photon to the backward-
propagating field EB (þx̂ direction), acquiring 2@k of
momentum and moving to the left [Fig. 2(a)]. Processes
involving absorption of a laser photon and subsequent
emission of a photon in the direction of the pump laser
transfer negligible momentum to the condensate and will
not be considered here.
We start with the Schrödinger equation describing the

coupling of the matter-wave and the electromagnetic fields.
After adiabatic elimination of the upper excited electronic
state (see discussion on the validity of adiabatic elimina-
tion below), the Schrödinger equation for the total system
wave function� ¼ �c , where� and c are the electronic
and center-of-motion parts of the total wave function, can
be expressed as
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where d is the dipole moment operator and EðþÞ ¼
EðþÞ

L e�ið!LtþkLxþkL�vDtÞ þ EðþÞ
B e�ið!Bt�kBx�kB�vDtÞ with

EðþÞ
L and EðþÞ

B being the amplitudes of the pump and the
generated backward-propagating fields. We have explicitly
included the one-photon recoil Doppler effect and vD ¼
@kL=M. In addition, � ¼ �þ i�0 where � ¼ !L �!21 is
the pump laser detuning to the upper excited electronic
state having a spontaneous emission rate of �0. We empha-
size that it is necessary to use the interaction Hamiltonian
given in Eq. (1) because of the complex detuning.

FIG. 2 (color online). (a) Schematic drawing of the growth of
the backward-propagating, spontaneously-emitted and stimu-
lated generated photons (the red wavy arrow) by Rayleigh
scattering. (b) Real and imaginary parts of the dispersion
Dð!�Þ ¼ i=½ð!þ 4!R ��LÞ�þ ið4Rþ �BÞ�� as the function
of u ¼ !� and �L�. Left: Bragg enhanced gain. Right: the steep
index change responsible for the ultraslow propagation. � ¼
50 �s, � ¼ 5 GHz, R ¼ 50 Hz, �B ¼ 24 kHz.
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Neglecting this term results in an erroneous ac Stark shift
and erroneous field equations.

Using Eq. (1) the equation of motion in the interaction
picture for the nth order scattered atomic mean-field mac-
roscopic wave function component c n is given by

@c n

@t
¼ �ð4Rþ �BÞc n

� ig0�
X
�

Eð�Þ
B

Eð�Þ
L

c n�1e
ið2n�1Þ4!Rt�i�Lt; (2)

where!R ¼ @k2L=ð2MÞ is the one-photon recoil frequency,
g0 ¼ j�Lj2=j�j2, R ¼ j�Lj2�0=ð4j�j2Þ with �L ¼
d12EL=@ being the Rabi frequency of the pump field [22]
and d21 being the dipole transition matrix element between
the ground and the upper excited electronic states.

Three important elements contained in Eq. (2) distin-
guish it from the macroscopic atomic mean-field wave
function equation of motion reported before: (1) 4R is
the residual of the complex ac Stark shift and it describes
the rate of excitation; (2) �B is the Bragg resonance width
of the transition between two momentum states coupled by
two fields propagating in opposite directions, one from the
pump laser and one from the backward-propagating, super-
radiantly generated field; (3) �L ¼ !L �!B is the fre-
quency difference between the pump and the
superradiantly generated backward-propagating field.

The Maxwell equation obeyed by the amplitude of the

generated field EðþÞ
B is given by
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where �B ¼ 2�!Bjd12j2=ðc@Þ,
P

njc nj2 ¼ n0 is the atom
number density of the initial condensate, and the phase
matching condition has been applied (see later
discussions).

We now investigate propagation dynamics of the gen-
erated field in matter-wave superradiant scattering.
In the initial growth regime we neglect the depletion of
the ground state condensate (i.e., c 0 is constant).
Correspondingly, all jnj> 1 terms are neglected. Taking
n ¼ 1 in Eq. (2), we obtain the equation of motion for the
polarization P ¼ c 0c

�
1e

i4!Rt�i�Lt responsible for generat-
ing the backward field (neglecting n < 0 components [22])
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Taking the time Fourier transform of Eqs. (3) and (4) under
the phase-matching condition we obtain,
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where ! is the transform variable and �ðx;!Þ is the time

Fourier Transform of EðþÞ
B ðx; tÞ. Equation (5) yields
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�
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The first feature to be noticed in Eq. (6) is that when
�L ¼ !L �!B ¼ 4!R, corresponding to a Bragg condi-
tion, the resonant denominator in the second exponent
results in an enhancement of the superradiantly generated
field [Fig. 2(b)]. This also suggests that if one injects an
initial backward-propagating seed field (in the þx̂ direc-
tion at x ¼ 0) into the medium and varies the frequency of
this seed field, one can map out the matter-wave super-
radiance gain profile as a function of two-photon detuning
[23]. In the following we consider only the case where
Bragg resonance enhancement is achieved. It is in this
region that significant gain and ultraslow wave propagation
can be obtained.
It is very insightful to examine the second exponent in

Eq. (6) under the condition of weak, long-pulse excitation
where ð4Rþ �BÞ� > 4. In particular we consider a
Gaussian-type initial backward field pulse profile

EðþÞ
B0 ð0; tÞ ¼ EðþÞ

B0 ð0; 0Þe�t2=�2 where EðþÞ
B0 ð0; 0Þ is the ampli-

tude of the backward-propagating field initially generated
stochastically at x ¼ 0 with a pulse length �, i.e.,

�ð0; !Þ ¼ EðþÞ
B0 ð0; 0Þ�

ffiffiffiffi
�

p
e�!2�2=4. By Taylor expanding

the second exponent to !-linear terms we obtain, after
the inverse Fourier transform,

IBðx; tÞ ¼ IBð0; 0Þe2ðG�	0Þx exp
�
�2

�
t

�
� x

Vg�

�
2
�
; (7)

where 	0 ¼ �0n0�0=j�j2 and IBð0; 0Þ / jEB0ð0; 0Þj2.
Clearly, Eq. (7) describes a field propagating in the þx̂

direction with maximum strength at the end x ¼ L. The
small-signal Bragg-resonance-enhanced propagation gain
constant and ultraslow group velocity [23,24] are

G ¼ �0n0g0
4Rþ �B

;
1

Vg

¼ 1

c
þ G

4Rþ �B

; (8)

where G>	0 leads to the superradiantly generated field
gain threshold j�Lj2 > ½4Rþ �B��0.
We note that this backward field retains the full quantum

fluctuation characteristics prescribed by the initial stochas-
tic (spontaneous) process that generates the initial field

EðþÞ
B0 ð0; 0Þ, as expected from a superradiance-originated

process. It can be shown that when the Taylor expansion
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is carried to !2 terms the present theory predicts a nearly-
symmetric pulse shape for the generated field with signifi-
cant pulse-length spreading. Both features are in excellent
agreement with experimental observations for low pump
intensities. We further note that Eq. (7) exhibits a quadratic
dependence on atom number density, i.e., IBðx; tÞ / n20, a
growth characteristic that is expected from a stimulated
process such as superradiance.

The predicted ultraslow propagation velocity of the
backward-propagating field, which leads to a delayed out-
put, is of critical importance. It is this ultraslow propaga-
tion velocity that validates the assumption of adiabatic
elimination of the upper electronic state, giving Eq. (1) a
solid foundation. We note that in all theoretical treatments
reported to date [9–14,19] adiabatic elimination has been
assumed, yet a fast photon relaxation rate of �photon �
c=L ¼ 3� 1012, which stems out of the small size of the
condensate (taking L ¼ 100 �m), has also been used in
several recent studies [13,14,19]. This fast photon damping
is inconsistent with the fact that in all (except one [20])
experiments reported to date the one-photon detuning is
typically j�j< 2� 1010 Hz. Consider a case where
�0n0 � 1014=ðcm � sÞ and the pump rate R ¼ 50. Equa-
tion (8) yields an ultraslow propagation velocity Vg �
60 cm=s which leads to �ðslowÞ

photon � Vg=L � j�j, validating
adiabatic elimination of the upper electronic state.
Correspondingly, the delay time for the generated field to
exit the medium of L ¼ 200 �m is about tD � 300 �s
which agrees well with experimental observations [2].

Finally, we examine the matter-optical wave momen-
tum conservation �K ¼ kM � ðkL þ kBÞ � 0 used in de-
riving Eqs. (2) and (3). For first-order scattering, energy-
momentum conservation requires [Fig. 1(b)]

4!R þ!B �!L ¼ ð4!R � 2!LÞ þ!B þ!L ¼ 0;

�K ¼ kM � nð!BÞ!B

c
� nð!LÞ!L

c
� 0:

Note that for the matter wave kM ¼ 2!L=c, and the optical
wave k-vector mismatch per atom is given by ½nð!B;LÞ �
1�!B;L=c � ��B;L=ðN0�Þ [23]; thus, we have

4!R þ �ð!BÞ þ �ð!LÞ
N0�

c � 0;

where �ð!B;LÞ ¼ 2�!B;Ljd12j2n0=c@ and N0 is the total

number of atoms in the condensate. The above relation
implies that � < 0 (a red-detuned pump laser) is required
to achieve the collective atom recoil motion expected in a
matter-wave superradiant scattering process [25]. We note
that this relation agrees with experimental studies [2,3,15].

In conclusion, we have presented a small-signal, matter-
wave superradiance theory that can explain all experimen-
tal observations reported to date. It shows why matter-
wave superradiant scattering can only occur efficiently

when the long-pulsed pump laser is red detuned and it
predicts a Bragg resonant enhancement in the superradiant
gain. We have further shown that matter-wave superradiant
scattering generates a field that travels against the pump
field with an ultraslow propagation velocity, validating the
adiabatic elimination of the upper electronic state. The
analytical theory presented here can, for the first time,
explain the full propagation dynamics of the matter-wave
superradiant scattering process. Although we chose to
analyze a longitudinally excited condensate, this theoreti-
cal framework is completely general and can be applied to
other (e.g., perpendicular) excitation geometries as well.
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